Millennial-scale oceanic CO2 release during marine isotope stage 3
- 1University of Southampton, Ocean and Earth Science, United Kingdom of Great Britain and Northern Ireland (rs1g16@soton.ac.uk)
- 2School of Earth and Environmental Sciences, University of Queensland, Brisbane, Australia
During the last glacial period atmospheric CO2 and temperature in Antarctica varied together on millennial timescales, with CO2 abruptly increasing by 10-20 ppm in <1000 years in some cases. The exact causes of these rapid CO2 changes during a cold glacial climate remain unclear. Here we examine the role of ocean carbon storage and atmospheric exchange by applying the boron isotope-pH (CO2) proxy to Globigerina bulloides from core site TAN110628 located in the Pacific Sector of the Southern Ocean. By reconstructing the surface carbonate system at TAN110628 at high temporal resolution (1 sample every 1 kyr) from 30 to 64 kyr we are able to fully constrain the nature of carbon leakage from the Sub Antarctic Zone of the Southern Pacific Ocean associated with these millennial-scale changes in atmospheric CO2. This provides unique insights into the causes of abrupt changes in atmospheric CO2 during Marine Isotope Stage 3 and the last termination.
How to cite: Shuttleworth, R., Bostock, H., and Foster, G.: Millennial-scale oceanic CO2 release during marine isotope stage 3, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17440, https://doi.org/10.5194/egusphere-egu2020-17440, 2020
This abstract will not be presented.