EGU2020-1979, updated on 17 Oct 2023
EGU General Assembly 2020
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.

A framework for quantifying the impacts of future climate and land use/cover changes on runoff in the Han River basin, China

Jing Tian1, Shenglian Guo1, and Chong-Yu Xu2
Jing Tian et al.
  • 1Wuhan University, School of water resources and hydropower engineering, Hydrology, Wuhan, China (
  • 2Department of Geosciences, University of Oslo, P.O. Box 1047 Blindern, N-0316 Oslo, Norway

As a link between the atmosphere and the earth’s surface, the hydrological cycle is impacted by both climate change and land use/cover change (LUCC). For most basins around the world, the co-variation of climate change and LUCC will continue in the future, which highlights the significance to explore the temporal-spatial distribution and variation mechanism of runoff and to improve our ability in water resources planning and management. Therefore, the purpose of this study is to propose a framework to examine the response of runoff to climate change and LUCC under different future scenarios. Firstly, the future climate scenarios under BCC-CSM1.1 and BNU-ESM are both downscaled and bias-corrected by the Daily bias correction (DBC) method, meanwhile, the future LUCC scenarios are predicted by the Cellular Automaton-Markov (CA-Markov) model according to the integrated basin plans of future land use. Then, based on the baseline scenario S0 (meteorological data from 1966 to 2005 and current situation LUCC2010), the following three scenarios are set with different combinations of future climate land-use situations, i.e., S1: only climate change scenario; S2: only the LUCC scenario; S3: climate and LUCC co-variation scenario. Lastly, the Soil and Water Assessment Tool (SWAT) model is used to simulate the hydrological process and quantify the impacts of climate change and LUCC on the runoff yield. The proposed framework is applied to the Han River basin in China. Results show that: (1) compared with the base period (1966-2005), the annual rainfall, daily maximum, and minimum air temperature during 2021-2060 will have an increase of 4.0%, 1.8℃, 1.6℃ in RCP4.5 while 3.7%, 2.5℃, 2.3℃ in RCP8.5, respectively; (2) from 2010 to 2050, the forest land and construction land in the Han River basin will have an increase of 2.8% and 1.2%, respectively, while that of farmland and grassland will have a decrease of 1.5% and 2.5%, respectively; (3) comparing with the single climate change or LUCC scenario, the co-variation scenario possesses the largest uncertainty in runoff projection. Under the two concentration paths, there is a consistent upward change in future runoff (2021-2060) of the studied basin compared with that in the base period, furthermore, the increase rate in RCP4.5 (+5.10%) is higher than that in RCP8.5 (+2.67%). The results of this study provide a useful reference and help for water resources and land use management in the Han River basin.

How to cite: Tian, J., Guo, S., and Xu, C.-Y.: A framework for quantifying the impacts of future climate and land use/cover changes on runoff in the Han River basin, China , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1979,, 2020.