EGU2020-20441
https://doi.org/10.5194/egusphere-egu2020-20441
EGU General Assembly 2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Drought stress affects carbon partitioning between plant primary and secondary metabolism in Scots pine trees

Jürgen Kreuzwieser1, Michel Grün1, Monika Eiblmeier1, Ines Bamberger1, Ana Maria Yanez-Serrano2, Lukas Fasbender1, and Christiane Werner1
Jürgen Kreuzwieser et al.
  • 1Chair of Ecosystem Physiology, University of Freiburg, Freiburg, Germany (juergen.kreuzwieser@ctp.uni-freiburg.de)
  • 2Center for Ecological Research and Forestry Applications (CREAF), Universitat Autonoma de Barcelona, Barcelona, Spain

The interplay of the processes controlling carbon partitioning into plant primary and secondary metabolisms, such as respiratory CO2 release and Volatile Organic Compound (VOC) biosynthesis, is still not fully understood. Pyruvate is a key metabolite which is formed in primary metabolism and acting as substrate in numerous secondary pathways forming many BVOCs, such as isoprene, volatile terpenoids, oxygenated compounds (acetaldehyde, acetic acid), benzenoids and fatty acid oxidation products (several wound VOCs), which can be emitted by plants. Within the ERC project VOCO, we established an innovative analytical setup enabling us to simultaneously measure stable carbon isotope composition of leaf exchanged CO2 (Infrared Isotope spectroscopy IRIS) together with VOC release (PTR-TOF-MS and GC-MS-C-IRMS). Position specific 13C-labeled pyruvate and 13CO2 were applied in tracer experiments to elucidate carbon partitioning at metabolic branching points into VOCs vs. CO2 in drought stressed Scots pine trees.

We observed treatment specific patterns of VOC emission including volatile terpenoids, oxygenated BVOCs and green leaf volatiles. Tracing 13C, we elucidated if compounds were de novo synthesized from 13C-labeled pyruvate or 13CO2. Position-specific labeling with [1-13C]-pyruvate and [2-13C]-pyruvate suggested that most VOCs were synthesized from the C2-C3 moiety of pyruvate whereas the C1 position was decarboxylated resulting in 13CO2 release by dark respiration in the light. We observed drought stress related shifts in 13CO2 release and VOC emissions. Our observations suggest that VOC emissions are associated with significant pyruvate C1 decarboxylation which is released to the atmosphere. This novel approach contributes to a better understanding of the metabolic links of processes of primary and secondary plant metabolisms which is relevant for the vegetation-atmosphere exchange of CO2 and VOCs. 

How to cite: Kreuzwieser, J., Grün, M., Eiblmeier, M., Bamberger, I., Yanez-Serrano, A. M., Fasbender, L., and Werner, C.: Drought stress affects carbon partitioning between plant primary and secondary metabolism in Scots pine trees, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20441, https://doi.org/10.5194/egusphere-egu2020-20441, 2020