EGU2020-21189
https://doi.org/10.5194/egusphere-egu2020-21189
EGU General Assembly 2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Incorporating large datasets of synthetic tropical cyclones with Global Tide and Surge Model (GTSM) for global assessment of extreme sea levels.

Maria Chertova1, Sanne Muis2, Inti Pelupessy1, and Philip Ward2
Maria Chertova et al.
  • 1Netherlands eScience Center
  • 2Vrije Universiteit Amsterdam

Coastal flooding due to tropical cyclones (TC) is one of the world’s most threatening hazards. The potential increase in the probability of these events in the future, due to climate change, necessitates the more accurate simulation of their potential hazard and resulting risks. This contribution is a step of a MOSAIC (MOdelling Sea level And Inundation for Cyclones) project that aims at developing and validating a computationally efficient, scalable, framework for large-scale flood risk assessment, combining cutting-edge disciplinary science and eScience technologies. As the first step, we develop a computationally efficient method for more accurately simulating current and future TC hazard and risk, by incorporating large datasets of tropical cyclones within the Global Tide and Surge Model (GTSM). The starting point is simulating the spatially explicit extreme sea levels for a large number of synthetic TCs. The difficulty lies in high computational time required for running GTSM models, as with duration of one simulation running on 24 cores of 5 days ( for 1yr). Until present each TC was simulated separately*, which is not feasible when modelling thousands of TC events. Here we present the development of an algorithm for the spatio-temporal optimization of the placing of TCs within GTSM in order to allow optimal use of the computational resources. This can be achieved because the region of influence of a particular TC in the model is limited in space and time (e.g. a TC making landfall in Florida will not materially affect water levels near New York).  This will enable running a large number of TCs in one simulation and will significantly reduce the required total computation time. We investigate a large range of parameters, such as distance between cyclones, time to the landfall, category of cyclone, and others, to optimize the distribution of TC within a single model run. We demonstrate a significant speedup relative to the sequential running of the cyclones within a single simulation.

*Muis, S., Verlaan, M., Winsemius, H. C., Aerts, J. C. J. H., & Ward, P. J. (2016). A global reanalysis of storm surge and extreme sea levels. Nature Communications, 7(7:11969), 1–11.

How to cite: Chertova, M., Muis, S., Pelupessy, I., and Ward, P.: Incorporating large datasets of synthetic tropical cyclones with Global Tide and Surge Model (GTSM) for global assessment of extreme sea levels. , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21189, https://doi.org/10.5194/egusphere-egu2020-21189, 2020

Displays

Display file