CO2 storage capacity of Kazakhstan
- Nazarbayev University, Department of Civil and Environmental Engineering, Nur-Sultan, Kazakhstan (woojin.lee@nu.edu.kz)
Carbon Capture and Storage (CCS) can provide the solution for the impending challenge of climate change until Renewable Energy Sources (RES) can take over a significant role in global energy market. Kazakh government developed the “Green Economy” plan to increase the share of RES in the energy sector to 50% by 2050. In November 2016, Kazakhstan ratified Paris Agreement to cut its GHG emissions from the base year of 1990 by 15% and 25% under different conditions. Previous research efforts in TIMES energy system modeling of GHG emissions has shown that satisfying the Paris Agreement terms require full phasing out of coal from residential sector heating in favor of RES. Given the current 1% share of RES in the energy sector, the energy demands of the country cannot be met with coal being excluded from consumption. Given the large fossil fuel resources of the country and coal-dependent economy, CCS may play a major role in the decarbonization of the country while allowing to rely on coal. “KazCCUS” is the first CCS-related project in post-soviet countries which aims to develop CCS related technologies in Kazakhstan. This research aims to identify proper geologic structures in sedimentary basins and estimate their storage capacity. Governmental oil and gas field database that was compiled from field operator surveys and publicly available literature was used to identify horizons with suitable reservoirs-seal characteristics. CO2 storage options were identified in 6 sedimentary basins of the country: Preacaspian, Mangyshlak, Ustyurt, South Torgay, Chu-Sarysu and Zaysan basins. The effective CO2 storage capacity in oil reservoirs, gas reservoirs and saline aquifers were estimated using the methods developed by Carbon Sequestration Leadership Forum and US DOE. The total effective CO2 storage capacity in 6 basins was estimated to be 204 Mt, 610 Mt, and 403 Gt in oil reservoirs, gas reservoirs, and saline aquifers, respectively. Sedimentary layers without intense faulting and suitable reservoir-seal pairs were found in 4 petroliferous sedimentary basins. The carbonate platforms in the pre-salt section of Precaspian basin and post-salt clastic reservoirs trapped by salt-dome related traps provide potential storage sites for CO2. Jurassic sandstone successions in Mangyshlak, South Torgay and Ustyurt basins are also good candidates for geologic CO2 storage and they all have a thick seal or caprock system that were holding hydrocarbon fluids for geologic time scale. The results of this study suggest that there is a huge potential for CCS in Kazakhstan and CCS can be deployed in mature fields of oil-producing basins. In addition, CO2-EOR is an option for operating oil fields. The country can have both environmental and economic benefits from CO2 storage and this will also contribute to the compliance with Paris Agreement terms. This research may serve as a baseline for future CCS deployment strategy in Kazakhstan.
How to cite: Abuov, Y. and Lee, W.: CO2 storage capacity of Kazakhstan, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21554, https://doi.org/10.5194/egusphere-egu2020-21554, 2020