Landslide Susceptibility Zonation Mapping in and Around Dharamshala, Himachal Pradesh Using Bivariate Statistical Techniques – A Comparative Study
- Indian Institute of Technology Roorkee, Earth Sciences, ROORKEE, India (ksweta@es.iitr.ac.in)
Abstract: Landslides are one of the most common and devastating natural hazards worldwide, which cause injuries to life and damage to properties, infrastructures leading to high-cost maintenance. In this study frequency ratio, information value and fuzzy logic models were used for landslide susceptibility mapping of an area of 356km2 in and around Dharamshala, Himachal Pradesh, using earth observation data. Dharamshala, a part of North-western Himalaya, is one of the fastest-growing tourism hubs with a total population of 30,764 according to the 2011 census and is amongst one of the hundred Indian cities to be developed as a smart city under PM’s Smart Cities Mission. The thrust for infrastructure development has led to a need for prior planning to minimize the consequences of landslide hazards. The final produced landslide susceptibility zonation maps with better accuracy could be used for land-use planning to prevent future losses. A landslide inventory for the study area was prepared through visual interpretation of high-resolution satellite imagery and available inventory report. Remote sensing data and other ancillary data like geological data were collected and processed in the GIS environment to generate thematic maps of parameters influencing landslide occurrence. The landslide causative parameters used in the study are slope angle, slope aspect, elevation, curvature, topographic wetness index, relative relief, distance from lineaments, land use land cover, and geology. Using these parameters and landslide inventory weight and membership value was calculated for the Frequency ratio, information value and Fuzzy logic model, respectively. In the frequency ratio and information value model, all the landslide causative parameters were arithmetically overlaid using calculated weights for landslide susceptibility mapping. In the fuzzy logic model, different fuzzy operators were applied to the calculated fuzzy membership values. Unlike the normalization process for membership calculation present study used the cosine amplitude method, which will give more reliable results. A total of ten landslide susceptibility maps (LSM) were produced using two models, 9 from fuzzy logic and 1 from frequency ratio. All the results were verified spatially and statistically using landslide locations and ROC curves. Further, the performance and significance of different outputs were compared to select the most suitable LSM for the study area. Among all fuzzy operators, “gamma” with λ = 0.9 showed the best accuracy (84.3%) and operator “and” has the worst accuracy (77.6%). But among all 9 output maps of fuzzy logic except the output of gamma (λ = 0.9) gives satisfactory LSM rest all show the unacceptable result as the maximum number of pixels is either in very low or high susceptible zone. The validation and comparison result exhibited that the fuzzy logic (accuracy=84.3%) is better than the information value (83.46) and the frequency ratio method (accuracy=83.43%).
Keywords: Bivariate Statistical Techniques, Information Value, Frequency Ratio, Fuzzy Logic, ROC
How to cite: Sweta, K. and Goswami, A.: Landslide Susceptibility Zonation Mapping in and Around Dharamshala, Himachal Pradesh Using Bivariate Statistical Techniques – A Comparative Study, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21567, https://doi.org/10.5194/egusphere-egu2020-21567, 2020