Ambient seismic noise suppression in COST action G2Net
- 1Mathematical Institute of the Serbian Academy of Sciences and Arts, Serbia
- 2National Institute for Subatomic Physics, Netherlands
- 3Heron Robots, Italy
- 4Istituto Nazionale di Geofisica e Vulcanologia (INGV), Italy
- 5Astronomical Observatory, University of Warsaw, Poland
- 6University of Rijeka, Faculty of Engineering, Croatia
- 7Institute of Mathematics and Computer Science, Moldova
- 8University of Rijeka, Center for Artificial Intelligence and Cybersecurity, Croatia
The analysis of low-frequency gravitational waves (GW) data is a crucial mission of GW science and the performance of Earth-based GW detectors is largely influenced by ability of combating the low-frequency ambient seismic noise and other seismic influences. This tasks require multidisciplinary research in the fields of seismic sensing, signal processing, robotics, machine learning and mathematical modeling.
In practice, this kind of research is conducted by large teams of researchers with different expertise, so that project management emerges as an important real life challenge in the projects for acquisition, processing and interpretation of seismic data from GW detector site. A prominent example that successfully deals with this aspect could be observed in the COST Action G2Net (CA17137 - A network for Gravitational Waves, Geophysics and Machine Learning) and its seismic research group, which counts more than 30 members.
This publication is based upon work from CA17137 - A network for Gravitational Waves, Geophysics and Machine Learning, supported by COST (European Cooperation in Science and Technology).
How to cite: Ilić, V., Bertolini, A., Bonsignorio, F., Jozinović, D., Bulik, T., Štajduhar, I., Secrieru, I., and Koley, S.: Ambient seismic noise suppression in COST action G2Net, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22165, https://doi.org/10.5194/egusphere-egu2020-22165, 2020.