Improving the understanding of recharge in a basalt aquifer based on a soil moisture model, water levels and climatic data
- Queensland University of Technology - QUT, School of Biology and Environmental Science, Australia (lisabagger.gurieff@hdr.qut.edu.au)
Knowledge of recharge processes in groundwater resource areas is of great importance for developing sustainable water management plans. In an effort to enhance the understanding of recharge in a basalt aquifer, a national water balance soil moisture model was compared with the response in water tables in multiple private pumping bores across the Tamborine Mountain plateau located in South East Queensland, Australia. The water levels in the pumping bores were influenced by the everyday use of the bores, which are utilised for household supply, stock watering, garden watering and irrigation. In each bore, the pumping response was identified and filtered out before being compared to the soil moisture model results. The soil moisture model (AWRA-L Australian Water Resource Assessment Landscape) includes results of surface runoff, soil moisture, evapotranspiration and deep drainage, to a depth of 6 m. The simulated soil moisture levels in the rootzone (rootzone defined as depth between 0 - 1 m), showed a similar hydrographic response following rain events to that observed in water levels in the aquifer. The response in the aquifer compared to the soil moisture showed some of the deeper bores had a lag effect and furthermore, the response also showed dependency on the soil moisture level (%) and on the size/duration of the rain event. It was observed that the simulated deep drainage (recharge) did not correlate to the observed changes in water tables. The soil moisture model simulated a nearly constant deep drainage (recharge) of 0.05±0.01mm a day, whereas the bores showed large increases in water table in response to rainfall events. Previous studies in the area based on the chloride mass balance approach have estimated that the annual deep drainage volume was an average of 30% of annual rainfall, while the soil moisture model approach has simulated an annual deep drainage volume of 1.2 – 1.7% of the total annual rainfall. While these results show that there are shortcomings related to applying the soil moisture model to estimate aquifer recharge, these results are an important initial finding regarding the estimation of recharge in the study area and can be used in water balance calculations for water management purposes. With further research into the observed relationships and parameterisation of these relationships, the soil moisture model could be updated to better represent recharge within this, and similar, study areas.
How to cite: Gurieff, L. B. and Reading, L.: Improving the understanding of recharge in a basalt aquifer based on a soil moisture model, water levels and climatic data, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2814, https://doi.org/10.5194/egusphere-egu2020-2814, 2020