A parameterization of local and remote tidal mixing
- 1LOCEAN Laboratory, Sorbonne University-CNRS-IRD-MNHN, France
- 2LOPS Laboratory, UBO-IFREMER-CNRS-IRD, France
- 3Department of Marine Sciences, University of Gothenburg, Sweden
- 4Scripps Institution of Oceanography. University of California, California
- 5Applied Physics Laboratory, University of Washington, Whasington
- 6Department of Earth and Planetary Science, The University of Tokyo, Japan
Vertical mixing is often regarded as the Achilles’ heel of ocean models. In particular, few models include a comprehensive and energy-constrained parameterization of mixing by internal ocean tides. Here, we present an energy-conserving mixing scheme which accounts for the local breaking of high-mode internal tides and the distant dissipation of low-mode internal tides. The scheme relies on four static two-dimensional maps of internal tide dissipation, constructed using mode-by-mode Lagrangian tracking of energy beams from sources to sinks. Each map is associated with a distinct dissipative process and a corresponding vertical structure. Applied to an observational climatology of stratification, the scheme produces a global three-dimensional map of dissipation which compares well with available microstructure observations and with upper-ocean finestructure mixing estimates. Implemented in the NEMO global ocean model, the scheme improves the representation of deep water-mass transformation and obviates the need for a constant background diffusivity.
How to cite: de Lavergne, C., Vic, C., Madec, G., Roquet, F., Waterhouse, A., Whalen, C., Cuypers, Y., Bouruet-Aubertot, P., and Hibiya, T.: A parameterization of local and remote tidal mixing, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3390, https://doi.org/10.5194/egusphere-egu2020-3390, 2020