EGU2020-3425
https://doi.org/10.5194/egusphere-egu2020-3425
EGU General Assembly 2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Development of basinal scale glacier mass balance model: an approach based on satellite observation and energy balance components

Akansha Patel1, Ajanta Goswami1, Thamban Meloth2, and Parmanand Sharma2
Akansha Patel et al.
  • 1Centre for Disaster Mitigation and Management,Indian Institute of Technology, Roorkee, India
  • 2National Centre for Antarctic and Ocean Research, Goa, India

The understanding of fresh water storage in the Himalayan region is essential for water resource management of the region. As glacier mass balance is a difference between the input and output water storage in a glacier over a period, glacier mass balance can be used as an indirect method to understand the storage. In the northwestern Himalaya, microscale meteorological stations are needed for mass balance estimation due to rugged terrain and complex topography of this region. However, there are only few meteorological stations available in that region. Therefore, in this study, we have developed a new model for glacier mass balance estimation at basinal scale. This model  includes the parameterization of energy balance components viz. albedo, longwave radiation, shortwave radiation, sensible heat, latent heat and heat flux at spatial and temporal scale using earth observation data. The modeling of air temperature is performed using the multi-regression analysis over the Chenab basin of the Indian Himalayas. Simulation is driven with the 16-days Landsat optical and thermal data from 2015 to 2018 that can be used for parameterization of the variable. This model is calibrated and validated with the field data of period 2015-2016. Further, the impact of climatic change and their influence on mass balance was also assessed to understand the future glacier health and mass changes. In contrast to previous temperature index based basin scale models, this model includes most of the energy balance components for better estimation of glacier mass balance. The model can also be used to estimate possible responses of the world’s glaciers to future climate change.

How to cite: Patel, A., Goswami, A., Meloth, T., and Sharma, P.: Development of basinal scale glacier mass balance model: an approach based on satellite observation and energy balance components, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3425, https://doi.org/10.5194/egusphere-egu2020-3425, 2020