Recognition of a 1.85 Ga oceanic rifting environment in southeastern Sweden
- 1Department of Geography and Geology, University of Turku, Turku, Finland (evgenia.salin@utu.fi)
- 2Institute of Earth Sciences, St. Petersburg State University, St. Petersburg, Russian Federation
- 3Geological Survey of Finland, Espoo, Finland
- 4Geological Sciences, School of Agricultural, Earth, and Environmental Sciences, University of Kwa-Zulu Natal, Westville (Durban), X5 4001, South Africa
The Fröderyd Group constitutes a deformed volcanic sequence, which together with the 1834 Ma Bäckaby tonalites occurs as a xenolith, within the 1793-1769 Ma TIB 1b unit of the Transscandinavian Igneous Belt (TIB) in southern Sweden. The Bäckaby tonalites, together with coarse-grained clastic metasedimentary sequences of the Vetlanda Group, belong to the Oskarshamn-Jönköping Belt (OJB; Mansfeld et al., 1996). In turn, the Fröderyd Group was considered to be an older, probably Svecofennian, unit by Sundblad et al. (1997).
The Fröderyd Group is composed of ca. 80% mafic and ca. 20% felsic volcanic rocks, with subordinate carbonate units. Mafic rocks are represented by tholeiitic basalts and spilitized pillow lavas with MORB affinity.
In this study, a sample from a metamorphosed rhyolite, belonging to the Fröderyd Group, was dated at 1849.5±9.8 Ga U-Pb zircon age (LA-ICPMS). This age is significantly younger than the Svecofennian crust, which was formed from 1.92 to 1.88 Ga. Instead, it is coeval with the oldest TIB granitoid generation (TIB 0), which intruded into the southwestern margin of the Svecofennian Domain, but the Fröderyd Group is still the oldest crustal component southwest of the Svecofennian Domain.
Geochronological, petrographical studies and field observations have shown that the southern margin of the Svecofennian Domain was affected by ductile deformation shortly after the intrusion of the 1.85 Ga TIB granites (Stephens and Andersson, 2005). This took place during an intra- or back-arc rifting above a subduction boundary in a retreating mode and caused formation of augen gneisses and emplacement of 1847 Ga dykes into the TIB 0 granitoids. Rifting was followed by a collision of the rifted slab with the Svecofennian crust which is evidenced from emplacement of pegmatitic leucosomes during 1.83-1.82 Ga into the 1.85 Ga orthogneisses.
It is interpreted, that the Fröderyd Group was formed within an oceanic rifting environment, collided with the rifted Svecofennian slab and later amalgamated onto the Svecofennian Domain. The proposed geological evolution includes two deformation events during the period of ca. 1.85-1.82 Ga, which is in accordance with Röshoff (1975). Furthermore, it is evident that the Fröderyd Group was formed as a separate unit outside the Svecofennian Domain, although they have a common geological history.
References
Mansfeld, J., 1996. Geological, geochemical and geochronological evidence for a new Palaeoproterozoic terrane in southeastern Sweden. Precambrian Res. 77, 91–103.
Röshoff, K., 1975. Some aspects of the Precambrian in south-eastern Sweden in the light of a detailed geological study of the Lake Nömmen area. Geologiska Föreningens i Stockholm Förhandlingar 97, 368–378.
Stephens, M.B. and Andersson, J., 2015. Migmatization related to mafic underplating and intra- or back-arc spreading above a subduction boundary in a 2.0–1.8 Ga accretionary orogen. Sweden. Precambrian Res. 264, 235–257.
Sundblad, K., Mansfeld, J. and Särkinen, M., 1997. Palaeoproterozoic rifting and formation of sulphide deposits along the southwestern margin of the Svecofennian Domain, southern Sweden. Precambrian Res. 182, 1–12.
How to cite: Salin, E., Sundblad, K., Lahaye, Y., and Woodard, J.: Recognition of a 1.85 Ga oceanic rifting environment in southeastern Sweden, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-424, https://doi.org/10.5194/egusphere-egu2020-424, 2019