EGU2020-4264
https://doi.org/10.5194/egusphere-egu2020-4264
EGU General Assembly 2020
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.

3-D lithospheric-scale rheological model of the Sea of Marmara

Ershad Gholamrezaie1,2, Magdalena Scheck-Wenderoth1,3, Judith Bott1, Oliver Heidbach1, Marco Bohnhoff1, and Manfred R. Strecker2
Ershad Gholamrezaie et al.
  • 1Helmholtz Centre Potsdam–GFZ German Research Centre for Geosciences, Potsdam, Germany
  • 2Institute of Geosciences, University of Potsdam, Potsdam, Germany
  • 3Faculty of Georesources and Material Engineering, RWTH Aachen, Aachen, Germany

The North Anatolian Fault (NAF) below the Sea of Marmara, also known as the Main Marmara Fault (MMF), has repeatedly produced major (M>7) earthquakes in the past. Currently, the MMF corresponds to a seismic gap between the locus of the most recent M>7 ruptures of the 1912 Ganos (M 7.3) and 1999 Izmit (M 7.4) earthquakes. This seismic gap has a recurrence time of approximately 250 years and has not ruptured since 1766. Consequently, it poses a major seismic hazard to the Marmara region, including the megacity Istanbul. The Marmara seismic gap is considered to be locked in the eastern and central segments of the MMF, while the western segment is partly creeping. In the context of seismic hazard and risk assessment, one of the main questions is, if either the Marmara seismic gap will rupture in a single large earthquake or in several ones due to segmentation along the MMF. In part this depends on the physical properties of the lithosphere below the Sea of Marmara as they are a key control of the contemporary stress state. To contribute to this discussion, we present 3‑D lithospheric-scale thermal and rheological models of the Sea of Marmara. These models are based on published 3‑D density models that indicate lateral and vertical crustal heterogeneities below the Sea of Marmara (Gholamrezaie et al., 2019). The density models consist of two layers of sediments, upper and lower crystalline crustal layers, and two crustal dome-shaped, high-density bodies that spatially correlate with major bends along the MMF. We show that these crustal heterogeneities may cause the lithospheric strength to vary significantly along the MMF, supporting the hypothesis that the fault is mechanically segmented. In addition, our results indicate a spatial correlation between observed aseismic fault patches (Wollin et al., 2018) and the location of the high-density bodies. These bodies are colder and stronger than the surrounding crystalline crust, and may thus represent the lateral bounds of the locked MMF segment.

How to cite: Gholamrezaie, E., Scheck-Wenderoth, M., Bott, J., Heidbach, O., Bohnhoff, M., and Strecker, M. R.: 3-D lithospheric-scale rheological model of the Sea of Marmara, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4264, https://doi.org/10.5194/egusphere-egu2020-4264, 2020.

Displays

Display file