EGU2020-5925
https://doi.org/10.5194/egusphere-egu2020-5925
EGU General Assembly 2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Developing a multi-methods dating framework for the Eastern Mediterranean region over the Late Quaternary

Shuang Zhang1, Christina Manning1, Christopher Satow2, Simon J Armitage1,3, and Simon Blockley1
Shuang Zhang et al.
  • 1Royal Holloway, University of London, United Kingdom of Great Britain and Northern Ireland (shuang.zhang.2017@live.rhul.ac.uk)
  • 2Department of Social Sciences, Oxford Brookes University, Oxford, UK
  • 3SFF Centre for Early Sapiens Behaviour (SapienCE), University of Bergen, Post Box 7805, 5020, Bergen, Norway

The Eastern Mediterranean is an important region for understanding the late Quaternary, as there is evidence for a complex pattern of climatic and environmental change, influenced by orbital forcing and complex feedback mechanisms (Rohling et al., 2013). It is also a key region for examining the dispersal of humans out of Africa. Consequently, it is important to develop robust chronologies for palaeoclimatic, environmental and archaeological records in the region, to allow synchronisation, comparison and hypothesis testing. Tephrochronology is a vital tool for correlating such records, but the fine detail of the Eastern Mediterranean tephra depositional history is not yet well defined. Part of the problem relates to a lack of cryptotephra (non-visible ash) studies on long stratigraphic records. It is well known from the Atlantic and Central Mediterranean that cryptotephra studies can significantly improve tephra inventories, and constrain the relationship between key tephra markers and important environmental transitions. Another key problem for the region is that for distal tephra there is a relatively limited geochemical database from different volcanic centres, especially in terms of trace element compositions. One important method for addressing this problem is to develop detailed tephrostratigraphic records and tephra geochemical inventories from long sediment sequences (e.g. Bourne et al., 2010; Satow et al., 2015).

Here we present the first marine crypto-tephrostratigraphy from the Levantine Sea, covering approximately the last ~200,000 years, from a long marine core (MD81-LC31). The new data for the core include tephra shard concentrations, major and trace element geochemistry, correlations to the eruptive record of the Aegean and Anatolian volcanic centres, and new radiometric age information. Our new data is compared to existing chronological information from LC-31, including sedimentological, geochemical, paleomagnetic and radiocarbon evidence. Our data helps to refine the chronology for this important record and will underpin ongoing studies into the detail of palaeoceanographic and environmental change in the region.

 

Bourne, A.J., Lowe, J.J., Trincardi, F. et al. 2010. Distal tephra record for the last ca 105,000 years from core PRAD 1-2 in the central Adriatic Sea: implications for marine tephrostratigraphy. Quaternary Science Reviews, 29(23-24), 3079-3094.

Rohling, E.J., Grant, K.M., Roberts, A.P. et al. 2013. Paleoclimate variability in the Mediterranean and Red Sea regions during the last 500,000 years: implications for hominin migrations. Current Anthropology, 54(S8), S183-S201.

Satow, C., Tomlinson, E.L., Grant, K.M. et al. 2015. A new contribution to the Late Quaternary tephrostratigraphy of the Mediterranean: Aegean Sea core LC21. Quaternary Science Reviews, 117, 96-112.

How to cite: Zhang, S., Manning, C., Satow, C., Armitage, S. J., and Blockley, S.: Developing a multi-methods dating framework for the Eastern Mediterranean region over the Late Quaternary, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5925, https://doi.org/10.5194/egusphere-egu2020-5925, 2020

Comments on the presentation

AC: Author Comment | CC: Community Comment | Report abuse

Presentation version 1 – uploaded on 28 Apr 2020 , no comments