EGU2020-7625, updated on 14 Jun 2023
https://doi.org/10.5194/egusphere-egu2020-7625
EGU General Assembly 2020
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.

Coastal landforms evolution during the Holocene marine transgression: a witness from the past to understand the future

Livio Ronchi1, Alessandro Fontana1, and Annamaria Correggiari2
Livio Ronchi et al.
  • 1Department of Geosciences, University of Padova, Italy (livio.ronchi@unipd.it)
  • 2CNR-ISMAR, Bologna, Italy (anna.correggiari@bo.ismar.cnr.it)

The continental shelves submerged during the last marine transgression could constitute a unique laboratory to analyse how coastal landforms developed and evolved within the framework of a rising sea level. Such features therefore represent precious witnesses in the light of the high rates of sea-level rise predicted for the end of the century. Unfortunately, the majority of the coastal landforms have been wiped away during and soon after their submersion as a consequence of the pervasive wave and tidal action. Therefore, only few examples of well-preserved submerged coastal landforms are available.

In this study we focused our attention on the Italian side of northern Adriatic Sea, where a wide, low-gradient continental shelf, coupled to a very rapid marine ingression, allowed the partial conservation of the transgressive coastal landforms. Such study was carried out through the analysis of almost 10,000 km of high-resolution geophysical surveys (CHIRP-sonar profiles) and tens of stratigraphic cores carried out in the area during the last 30 years.

We recognized a series of almost 100 remnants of paleo tidal inlets which formed during the post-LGM transgression that led to the submersion of the Adriatic shelf. Despite paleo tidal inlets are often almost completely erased by the wave ravinement processes, when preserved they represent ideal markers for reconstructing the timing and impact of sea-level rise on the transgressed coastal plain. A wealth of information can be obtained by their analysis, such as the paleo coastlines locations, the dimensions of the paleo lagoon systems and, in particular conditions, the relative paleo sea-level. Such features therefore represent valid means to reconstruct the impact of the transgressive sea on the coastal area.

In particular, the paleo tidal inlets recognized in the northern Adriatic Sea suggest the recurrent formation followed by rapid overstepping of large lagoon systems during the early Holocene. Moreover, these features can be subdivided into clusters based on the depth of their top, thus allowing to infer the position of a series of paleo coastlines and suggesting the occurrence of periods of stasis of the relative sea-level rise, which allowed the formation of such inlets.

Although remnants of paleo tidal inlets are common on the northern Adriatic Shelf, they are almost absent in the northernmost portion of the basin (i.e. the Gulf of Trieste), where a series of paleo fluvial systems have been identified, thus providing a direct witness on the evolution of the coastal plain during a transgressive phase and right before its rapid submersion.

This research provides new insights on two main topics: i) it improves our knowledge on the post-LGM marine transgression, therefore contributing to reconstruct the history of sea-level rise and to constrain the modelling of future behaviour; ii) it contributes to understand the evolution of tidal inlets and lagoon-barrier island systems under the forcing of high rates of sea-level rise.

How to cite: Ronchi, L., Fontana, A., and Correggiari, A.: Coastal landforms evolution during the Holocene marine transgression: a witness from the past to understand the future, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7625, https://doi.org/10.5194/egusphere-egu2020-7625, 2020.

This abstract will not be presented.