EGU2020-8076
https://doi.org/10.5194/egusphere-egu2020-8076
EGU General Assembly 2020
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.

Long-term energy balance measurements at three different mountain permafrost sites in the Swiss Alps

Martin Hoelzle1, Christian Hauck1, Jeannette Noetzli2, Cécile Pellet1, and Martin Scherler1
Martin Hoelzle et al.
  • 1University of Fribourg, Alpine Cryosphere and Geomorphology, Department of Geosciences, Fribourg, Switzerland (martin.hoelzle@unifr.ch)
  • 2WSL Institute for Snow and Avalanche Research SLF, Davos, Switzerland

The surface energy balance is one of the most important influencing factors for the ground thermal regime. It is therefore crucial to understand the interactions of the individual heat fluxes at the surface and within the subsurface layers as well as their relative impacts. A unique set of high-altitude meteorological measurements has been analysed to determine the energy balance at three mountain permafrost sites in the Swiss Alps, where data is being collected since the late 1990s in collaboration with the Swiss Permafrost Monitoring (PERMOS). The three stations have a standardized equipment with sensors for four-component radiation, air temperature, humidity, wind speed and direction as well as ground temperatures and snow height. The three sites differ considerably by their surface and ground material composition ranging from a coarse blocky active layer above ice supersaturated permafrost at rock glacier Murtèl-Corvatsch to deeply weathered micaceous shales, which are covered by fine grained debris of sandy and silty material with a low ice content at the Northern slope of Schilthorn summit. The third site at the Stockhorn plateau shows intermediate ice contents and heterogeneous surface conditions with medium-size debris, fine grained material and outcropping bedrock. Ice content estimation and general ground characterisation are based on geophysical surveying and borehole drilling.

 

The energy fluxes are calculated based on around two decades of field measurements. While the determination of the radiation budget and the ground heat flux is comparatively straightforward (by the four-component radiation sensor and thermistor measurements within the boreholes, respectively), larger uncertainties exist for the determination of sensible and latent turbulent heat fluxes. They are therefore determined on the one hand by the bulk aerodynamic method using the bulk Richardson number to describe the stability of the surface layer relating the relative effects of buoyancy to mechanical forces and on the other hand by the bowen ratio method.

 

Results show that mean air temperature at Murtèl-Corvatsch (1997–2018, elevation 2600 m asl.) is –1.66°C and has increased by about 0.7°C during the observation period. The Schilthorn (1999–2018, elevation 2900 m asl.) site shows a mean air temperature of –2.48°C with a mean increase of 1.0°C and the Stockhorn (2003–2018, elevation 3400 m asl.) site shows lower air temperatures with a mean of –5.99°C with an increase of 0.6°C. Measured net radiation, as the most important energy input at the surface, shows substantial differences with mean values of 33.41 Wm-2 for Murtèl-Corvatsch, 40.65 Wm-2 for Schilthorn and 24.88 Wm-2 for Stockhorn. The calculated turbulent fluxes show values of around 7 to 12 Wm-2 using the bowen ratio method and 8 to 18 Wm-2 using the bulk method at all sites. Large differences are observed regarding the energy used for melting of the snow cover: at Schilthorn a value of 12.41 Wm-2, at Murtèl-Corvatsch of 7.31 Wm-2 and at Stockhorn of 3.46 Wm-2 is calculated reflecting the differences in snow height at the three sites.

How to cite: Hoelzle, M., Hauck, C., Noetzli, J., Pellet, C., and Scherler, M.: Long-term energy balance measurements at three different mountain permafrost sites in the Swiss Alps, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8076, https://doi.org/10.5194/egusphere-egu2020-8076, 2020.

Displays

Display file