EGU2020-8126
https://doi.org/10.5194/egusphere-egu2020-8126
EGU General Assembly 2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Last deglaciation in the central Balkan Peninsula: geochronological evidence from the Jablanica and Jakupica Mts (North Macedonia)

Zsófia Ruszkiczay-Rüdiger1, Zoltán Kern1, Marjan Temovski1,2, Balázs Madarász3, Ivica Milevski4, Régis Braucher5, Johannes Lachner6, Peter Steier6, and Aster Team5,7
Zsófia Ruszkiczay-Rüdiger et al.
  • 1Institute for Geological and Geochemical Research, Research Centre for Astronomy and Earth Sciences, Budapest, Hungary (rrzsofi@geochem.hu)
  • 2Isotope Climatology and Environmental Research Centre, Institute for Nuclear Research, Debrecen, Hungary
  • 3Geographical Institute, Research Centre for Astronomy and Earth Sciences, Budapest, Hungary
  • 4Institute of Geography, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, Skopje, North Macedonia
  • 5Aix-MarseilleUniv., CEREGE, CNRS, IRD, Collége de France, INRAE , Aix en Provance, France
  • 6University of Vienna, Faculty of Physics - Isotope Physics, Austria
  • 7Didier Bourlès, Georges Aumaître, Karim Keddadouche

Several studies applied numerical age determination methods to examine glacial phases of the central Balkan Peninsula. However, the resulting conflicting datasets require further discussion. This study provides 10Be Cosmic Ray Exposure (CRE) ages of a succession of glacial landforms in the Jablanica and Jakupica Mts (North Macedonia), aiming at a better understanding of Late Pleistocene glacier development in the area.

In the Jablanica Mt. (~41.25° N; Crn Kamen, 2257 m a.s.l.) six glacial stages were identified (Temovski et al., 2018). The CRE ages of five glacial stages (from the second oldest to the youngest) range from 16.8+0.8/-0.5 ka to 13.0+0.4/-0.9 ka. Accordingly, the most extensive glaciation in the Jablanica Mt. occurred before ~17 ka (Ruszkiczay et al., 2020).

Based on the accumulation area balance ratios (AABR) of the reconstructed glaciers, their mean equilibrium line altitudes (ELAs) were estimated. The average ELA of the glaciers was 1792±18 m a.s.l. during the largest ice extent, and 2096±18 m a.s.l. during the last phase of the deglaciation.

Independent reconstructions of key climatic drivers of glaciological mass balance suggest that glacial re-advances during the deglaciation in the Jablanica Mt. were associated to cool summer temperatures before ~15 ka. The last glacial stillstand may result from a modest drop in summer temperature coupled with increased winter snow accumulation. In the study area no geomorphological evidence for glacier advance after ~13.0+0.4/-0.9 ka could be found. Relying on independent climate proxies we propose that (i) the last glacier advance occurred no later than ~13 ka, and (ii) the glaciers were withdrawing during the Younger Dryas when low temperatures were combined with dry winters.

In the Jakupica Mt. (~41.7° N, Solunska Glava, 2540 m a.s.l.) a large plateau glacier was reconstructed. The study area comprised six eastward facing, formerly glaciated valleys. Cirque floor elevations range from ~2180 m a.s.l. at Salakova Valley, to between ~2115 and ~2210 m a.s.l. on the carbonate plateau. The lowest mapped moraines are descending down to 1550-1700 m a.s.l. Due to the large plateau ice and the complicated system of confluences, glacier reconstructions using semi-automated GIS tools are problematic. Four to six deglaciation phases were reconstructed, and a preliminary estimation of the ELAs based on the maximum elevation of the lowermost lateral moraines leads to ELA values of 1800±50 m a.s.l. for the most extended phase. Multiple CRE ages for the subsequent glacial stages are also being acquired for Jakupica Mts.

This research was supported by the NKFIH FK124807 and GINOP-2.3.2-15-2016-00009 projects, by the INSU/CNRS and the ANR through the program “EQUIPEX Investissement d’Avenir” and IRD and by the Radiate Transnational Access 19001688-ST.

Ruszkiczay-Rüdiger Zs., Kern Z, Temovski M, Madarász B, Milevski I, Braucher R, ASTER Team (2020) Last deglaciation in the central Balkan Peninsula: Geochronological evidence from Jablanica Mt (North Macedonia). Geomorphology 351: 106985

Temovski M, Madarász B, Kern Z, Milevski I, Ruszkiczay-Rüdiger Zs. (2018) Glacial geomorphology and preliminary glacier reconstruction in the Jablanica Mountain, Macedonia, Central Balkan Peninsula. Geosciences 8(7): 270

How to cite: Ruszkiczay-Rüdiger, Z., Kern, Z., Temovski, M., Madarász, B., Milevski, I., Braucher, R., Lachner, J., Steier, P., and Team, A.: Last deglaciation in the central Balkan Peninsula: geochronological evidence from the Jablanica and Jakupica Mts (North Macedonia), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8126, https://doi.org/10.5194/egusphere-egu2020-8126, 2020

This abstract will not be presented.