EGU2020-8310, updated on 12 Jun 2020
https://doi.org/10.5194/egusphere-egu2020-8310
EGU General Assembly 2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

How sensitive is the sub-seasonal prediction to the choice of dynamical cores in the atmospheric model?

Ha-Rim Kim1, Baek-Min Kim2, Sang-Yoon Jun3, and Yong-Sang Choi1
Ha-Rim Kim et al.
  • 1Department of Climate and Energy Systems Engineering, Ewha Womans University, Seoul, Republic of Korea
  • 2Pukyung National University, Department of Environmental Atmospheric Sciences, Busan, Republic of Korea
  • 3Unit of Artic Sea-Ice Prediction, Korea Polar Research Institute, Incheon, Korea, Republic of Korea

This study investigates the prediction skill of the sub-seasonal prediction model that can depend on the choice of dynamical cores: the finite volume (FV) dynamical core on a latitude-longitude grid system versus spectral element (SE) dynamical core on a cubed-sphere grid system. Recent researches showed that the SE dynamical core on a uniform grid system increases parallel scalability and removes the need for polar filters mitigating uncertainty in climate prediction, particularly for the Arctic region. However, it remains unclear whether the choice of dynamical cores can actually yield significant skill changes or not. To tackle this issue, we implemented a sub-seasonal prediction model based on the Community Atmospheric Model version 5 (CAM5) by incorporating the above two dynamical cores with virtually the same physics schemes. Sub-seasonal prediction skills of the SE dynamical core and FV dynamical core are verified with ERA-interim reanalysis during the early winter (November – December) and the late winter (January – February) from 2001/2002 to 2017/2018. The prediction skills of the two different dynamical cores were significantly different regardless of the virtually same physics schemes. In the ocean, the predictability of the SE dynamical core is similar to the FV dynamical core, mostly because of our simulation configuration imposing the same boundary and initial conditions at the surface. Notable differences in the one-month predictability between the two cores are found for the wintertime Arctic and mid-latitudes, particularly over North America and Eurasia continents. With the one-month lead, SE dynamical core exhibited higher predictability over North America in late winter, whereas the FV dynamical core showed relatively higher predictability in East Asia and Eurasia in early winter. One of the reasons for these differences may be the different manifestations of Arctic-midlatitudes linkage in the two dynamical cores; the SE dynamical core captures warmer Arctic and colder mid-latitudes relatively well than the FV dynamical core. Therefore, we conclude that the careful choice of dynamical cores of sub-seasonal prediction models is needed.

How to cite: Kim, H.-R., Kim, B.-M., Jun, S.-Y., and Choi, Y.-S.: How sensitive is the sub-seasonal prediction to the choice of dynamical cores in the atmospheric model?, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8310, https://doi.org/10.5194/egusphere-egu2020-8310, 2020