EGU2020-8775
https://doi.org/10.5194/egusphere-egu2020-8775
EGU General Assembly 2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Analysis of the Dominant Spatial Patterns of Summer Precipitation and Circulation Characteristics in Northwest China

liwei liu1, guoyang lu1, dong wei2, danhua li1, xing wang1, and fan wang1
liwei liu et al.
  • 1Lanzhou Regional Climate Center, Gansu Meteorological Bureau, China (xmppllw@126.com)
  • 2Lan Zhou Central Meteorological Observatory,Gansu Meteorological Bureau, China (598257698@qq.com)

In recent years, the summer rainfall shows an increasing trend in Northwest China. Based on the NCEP/NCAR reanalysis data, the RESST data from NOAA and the precipitation data from 351 meteorological observation stations in Northwest China from 1981-2018, the dominant modes of summer precipitation anomalies, the corresponded circulation characteristic and the main influence systems were analyzed by diagnostic methods. There were three dominant EOF modes about summer rainfall, the first one showed the same anomaly in whole region, the second showed a inverse pattern between the east and west, and the third showed the opposite anomaly between the south and north. The variance contribution of the first mode accounted for 20% and the first mode was represented as the primary mode in the subsequent analysis. The high impact region of circulation which affected the precipitation in Northwest China was the middle and high latitudes area of Eurasia and the subtropical area: for the first mode’s positive phase, the 500hPa height field showed a "+ - +" distribution in the middle latitude of Eurasia, while on the 200hPa wind field, there was an anticyclone near the Ural and a cyclone near Lake Baikal, it also has an anticyclone on the Chinese mainland, this configuration will facilitates the strengthening of westerly jets. The tropical Pacific and the North Atlantic are the main external forcing signals of the circulation pattern: SST characteristics showed that the negative phase of the North Atlantic SST Tripole in spring, from winter of the previous year to summer of the current year, SST of the equatorial Middle East Pacific developed from warm to cold. The distribution of 500 hPa height field corresponding to the main mode of summer precipitation in Northwest China is similar to that of EU remote correlation type. An index(IHgt) was defined to reflect circulation patterns in mid-latitude and subtropical regions, when the index is positive/negative, most of the precipitation in northwest China is more/less. After 2000, the correlation between the two increased significantly. Given the performance of the IHgt index in describing the summer precipitation, it could be used as a good indicator in the monitoring and prediction of the summer precipitation in Northwest China.

How to cite: liu, L., lu, G., wei, D., li, D., wang, X., and wang, F.: Analysis of the Dominant Spatial Patterns of Summer Precipitation and Circulation Characteristics in Northwest China, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8775, https://doi.org/10.5194/egusphere-egu2020-8775, 2020