EGU2020-8882
https://doi.org/10.5194/egusphere-egu2020-8882
EGU General Assembly 2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Satellite and ground-based magnetic field observations related to volcanic eruptions

Konrad Schwingenschuh1, Werner Magnes1, Xuhui Shen2, Jindong Wang3, Bingjun Cheng7, Andreas Pollinger1, Christian Hagen1, Roland Lammegger5, Michaela Ellmeier5, Christoph Schirninger1, Hans-Ulrich Eichelberger1, Bernhard Mandl1, Mohammed Y. Boudjada1, Bruno P. Besser1, Alexander A. Rozhnoi4, Tielong Zhang1, Magda Delva1, Irmgard Jernej1, Özer Aydogar1, and Roman Leonhardt6
Konrad Schwingenschuh et al.
  • 1Space Research Institute, Graz, Austria (konrad.schwingenschuh@oeaw.ac.at)
  • 2Institute of Earthquake Administration, Beijing, China
  • 3Center for Space Science and Applied Research, Chinese Academy of Sciences, Beijing, China
  • 4Institute of the Earth Physics, Russian Academy of Sciences, Moscow, Russia
  • 5Institute of Experimental Physics, Graz University of Technology, Graz, Austria
  • 6Central Institution for Meteorology and Geodynamics (ZAMG), Vienna, Austria
  • 7National Space Science Center, Chinese Academy of Sciences, Beijing, China

In this study we investigate volcanic eruption phenomena related to ionospheric disturbances, e.g. Heki (2006) used total electron content (TEC) measurements for this task. In particular, a model is developed how discharge phenomena (e.g. Houghton etal, 2013) can produce magnetic field variations at SWARM and CSES satellite orbits, i.e. altitudes of ~500 km in the F-region. Several coupling mechanism between lithosphere, atmosphere, and ionosphere are discussed by Simões etal (2012).
Experimental evidence is based on magnetic field observations aboard CSES mission in the time frame July 2018 to January 2019. The theoretical considerations include the source mechanism, propagation path, and the signal strength at low earth orbit satellite altitude.

Ref:
(1) Heki, K., Explosion energy of the 2004 eruption of the Asama Volcano, central Japan, inferred from ionospheric disturbances, GRL, 33, L14303, 2006. doi:10.1029/2006GL026249
(2) Houghton, I. M. P., K. L. Aplin, and K. A. Nicoll, Triboelectric Charging of Volcanic Ash from the 2011 Grı́msvötn Eruption, PRL, 111, 118501, 2013. doi:10.1103/PhysRevLett.111.118501 arXiv:1304.1784
(3) Simões F., R. Pfaff, J.-J. Berthelier, J. Klenzing, A Review of Low Frequency Electromagnetic Wave Phenomena Related to Tropospheric-Ionospheric Coupling Mechanisms, SSR, 168:551–593, 2012. doi:10.1007/s11214-011-9854-0

How to cite: Schwingenschuh, K., Magnes, W., Shen, X., Wang, J., Cheng, B., Pollinger, A., Hagen, C., Lammegger, R., Ellmeier, M., Schirninger, C., Eichelberger, H.-U., Mandl, B., Boudjada, M. Y., Besser, B. P., Rozhnoi, A. A., Zhang, T., Delva, M., Jernej, I., Aydogar, Ö., and Leonhardt, R.: Satellite and ground-based magnetic field observations related to volcanic eruptions, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8882, https://doi.org/10.5194/egusphere-egu2020-8882, 2020

Displays

Display file