EGU2020-9403, updated on 10 Jan 2024
https://doi.org/10.5194/egusphere-egu2020-9403
EGU General Assembly 2020
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Hydrogeochemical changes in trace element concentrations in connection with earthquakes and a volcanic eruption in Iceland

Stefania Franchini1, Marino Domenico Barberio1, Maurizio Barbieri1, Andrea Billi2, Tiziano Boschetti3, Sigurjón Jónsson4, Marco Petitta1, Alasdair Skelton5, and Gabrielle Stockmann6
Stefania Franchini et al.
  • 1Earth Sciences Department, University of Rome “Sapienza”, Rome, Italy
  • 2IGAG-CNR, Institute for Environmental Geology and Geoengineering, National Research Council, Rome, Italy
  • 3Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Italy
  • 4King Abdullah University of Science and Technology (KAUST)
  • 5Department of Geological Sciences, Stockholm University, Stockholm, Sweden
  • 6Institute of Earth Sciences, University of Iceland, Reykjavík, Iceland

The aim of this study was to identify changes of trace element concentration in groundwater and test for coupling with seismic and volcanic activity in Iceland. Samples used in this study were collected between September 2010 and June 2018 from the HA-01 groundwater well in Hafralækur (Northern Iceland), south of the Tjörnes Fracture Zone (oblique transform zone), and near the Laxá and Skálfandafljót river valleys. The temperature of the groundwater from the HA-01 well is 71–76 °C, pH is ca. 10.2 (at ~ 25ºC), and the dissolved solid content is about 240 ppm, which is typical of low temperature geothermal groundwaters in inland areas of Iceland. The HA-01 well groundwater is also influenced by mixing between old ice age aquifer and younger aquifer groundwater. The same samples were previously analyzed for major element concentrations and isotopic ratios, with results - changes prior to seismic activity - being published in recent papers. The 495 earthquakes (Mw≥4.0, September 2010 to June 2018) considered in this study are from the USGS database. Twenty-two of these earthquakes occurred in the Tjörnes Fracture Zone with Mw between 4.1 and 5.5 whereas the remaining ones with Mw between 4 and 5.5 were related to the Bárðarbunga eruption in central Iceland, which began on 29 August 2014 and ended on 27 February 2015. Results of trace element analysis highlight characteristic variations in the temporal series related to the Bárðarbunga eruption (onset in August 2014) and to the 2018 seismic swarm that occurred in the Tjörnes Fracture Zone. In particular, a marked increase of Li, B, Ga, Mo and Rb and a slight increase of Sr and V were observed prior to and in connection with the onset of the Bárðarbunga eruption. Moreover, our results show a pre-seismic (2018 seismic swarm in the Tjörnes Fracture Zone) hydrogeochemical variability greater than the background variability. Despite the distance to the Bárðarbunga eruption site, GPS data from northern Iceland show a clear strain changes that are associated with the large dike intrusion that fed the eruption and are possibly correlated with the hydrogeochemical time series. Results from this study in Iceland show that the hydrogeochemical monitoring of volcanic and seismic areas is a promising method in the science of seismic and volcanic precursors.

How to cite: Franchini, S., Barberio, M. D., Barbieri, M., Billi, A., Boschetti, T., Jónsson, S., Petitta, M., Skelton, A., and Stockmann, G.: Hydrogeochemical changes in trace element concentrations in connection with earthquakes and a volcanic eruption in Iceland, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9403, https://doi.org/10.5194/egusphere-egu2020-9403, 2020.