Union-wide
Inter- and Transdisciplinary Sessions
Disciplinary sessions AS–GM
Disciplinary sessions GMPV–TS

Session programme

NH8

NH – Natural Hazards

Programme group chair: Ira Didenkulova

NH8 – Biological, Environmental & Other Hazards

Programme group scientific officer: Paolo Ciavola

NH8.3

The research frontier on mineral fibres is progressively shifting from the industrial to the geo-environmental domain. Elongated Mineral Particles (EMP) and Naturally Occurring Asbestos (NOA) gained increasing attention due to their consequences on human health, workplace safety and environmental pollution. NOA, initially considered a concern only in ultramafic and meta-ultramafic rocks, have been actually found in metabasites, metagranitoids and other metamorphic rocks, as well as in ophiolite-derived sediments. NOA may represent a risk when mobilized by natural weathering or human activities. The evaluation of NOA content in natural matrices has become an essential point in geo-environmental risk analysis. However, the lack of guidelines negatively affects the risk analysis and causes concern and negative perception in the general population. Shared approaches to the management of NOA risk, containing shared definitions of EMP/NOA, toxicological evaluation of non-asbestos fibres, hazard quantification strategies, and geoengineering mitigation procedures, are therefore hardly required. To tackle these challenges and build a comprehensive knowledge of the NOA issue, a multidisciplinary approach, encompassing mineralogy, geology, environmental chemistry, epidemiology and medicine, is highly envisaged.

To answer these points, this session welcomes contributions and case studies on the following aspects:

• Mineralogy and petrography of NOA and fibrous minerals, including definition and regulatory aspects;

• Hazard evaluation of non-asbestos mineral fibres;

• NOA risk assessment in natural environment (soil/rocks, air and water);

• NOA risk management, protection strategies for workers, environment, and population.

Share:
Convener: Luca Barale | Co-conveners: Jasmine Rita PetriglieriECSECS, Christine Laporte-Magoni, Cagnard Florence, R M Bailey
Displays
| Attendance Mon, 04 May, 08:30–10:15 (CEST)
BG3.7

Shorter return period of climate and hydrological extremes has been observed in the changing climate, which affects the distribution and vitality of ecosystems. In many regions, available water is a crucial point of survival. Risk can be enhanced by the exposure and/or by the vulnerability of the affected ecosystem as well as by land use/land cover change.
The session should provide a multidisciplinary platform for sharing experiences and discussing results of local and catchment scale case studies from a wider range of relevant fields such as
• observed impacts and damage chains in natural and agricultural ecosystems induced by droughts and intense rainfall events;
• correlation between the underlying environmental factors (e.g. climate, water storage capacity of soil) and the distribution/vitality of ecosystems;
• integrated application or comparison of databases and methods for the identification and complex assessment of ecosystem responses to abiotic stress factors;
• expected tendencies of abiotic risk factors affecting and limiting the survival of the vulnerable species.
Contributions are encouraged from international experiences, ongoing research activities as well as national, regional and local initiatives.

Share:
Co-organized by HS10/NH8
Convener: Péter Kalicz | Co-conveners: Zoltán Gribovszki, Borbála Gálos, Karol Mrozik, Jan Szolgay
Displays
| Attendance Mon, 04 May, 16:15–18:00 (CEST)
BG1.3

The session aims at collecting contributions from all scientists daily faced with the need of discriminating between what is natural and what is the result of the interaction of humans with the surrounding environment, with respect to elemental concentrations. Commonly, geoscientists involved in environmental projects are requested to define local or regional reference concentration values for those chemical substances (mostly potentially harmful elements) and, recently, radioisotopes which can be originating from both geological materials and human driven processes.
To discriminate natural contributions from anthropogenic ones is a very complicated task and several scientists have applied different methods and multiple approaches (from statistics to the weight of evidence) in order to provide guidance and reliable solutions to government institutions and professional stakeholders.
Case studies on solid matrices (soil, sediments, etc.), natural water and other environmental media are of interest for the session together with more methodological studies mostly focusing on the proposal of innovative techniques for defining these values.

Share:
Co-organized by NH8
Convener: Stefano Albanese | Co-conveners: Ariadne Argyraki, Gevorg TepanosyanECSECS
Displays
| Attendance Mon, 04 May, 10:45–12:30 (CEST)
ITS2.12/HS12.24

In an urbanizing world with major land-use changes, both human (social and economic) and natural systems and their environmental challenges and constraints need to be considered in order to achieve sustainable urban development. Nature‐based solutions (NBS) in urban areas can make anthropogenic landscapes more ecosystem-compatible, enhancing ecosystem services, preserving biodiversity, mitigating land degradation, and increasing urban resilience to environmental changes. Maintaining and restoring ecosystems and green–blue areas within urban regions is important for a) increasing the well‐being of urban populations, b) providing multifunctional services, such as storm water mitigation and local climate regulation, c) improving energy efficiency of buildings, and d) mitigating carbon emissions. Implementing NBS in urban areas is of growing importance worldwide, and particularly in the EU political agenda, as a way to attain some of the Sustainable Development Goals (e.g. Sustainable cities and communities), and to reinforce the New Urban Agenda. Implementing efficient NBS in urban landscapes requires integrated and interdisciplinary approaches.

This session aims to enhance the scientific basis for sustainable urban development and resilience and advance knowledge of innovative nature-based approaches to face environmental changes (e.g. in land use and climate) and simultaneously provide better understanding of associated social-ecological interactions. This session seeks to:

• Better understanding of advantages and disadvantages of NBS in Urban environments;
• New methods and tools to investigate the role of NBS in the context of environmental change, in particular the effectiveness of NBS in enhancing urban resilience;
• New insights and perspectives of NBS, particularly their role in providing urban ecosystem services, such as storm water regulation and reducing greenhouse gas emissions;
• Identifying opportunities for and barriers to implement NBS, driven by current regulatory frameworks and management practices - and how the former can be reaped and the latter overcome;
• Presenting overviews and case studies of NBS projects that also involve the private sector and market-based mechanisms;
• Interactions between NBS and the Sustainable Development Goals (SDGs);
• Approaches for integrating actors involved in landscape design and urban planning.

Share:
Co-organized by BG2/CL3/NH8
Convener: Zahra KalantariECSECS | Co-conveners: Carla FerreiraECSECS, Haozhi PanECSECS, Omid RahmatiECSECS, Johanna SörensenECSECS
Displays
| Attendance Tue, 05 May, 08:30–12:30 (CEST)
ITS4.5/GI1.4

Environmental systems often span spatial and temporal scales covering different orders of magnitude. The session is oriented in collecting studies relevant to understand multiscale aspects of these systems and in proposing adequate multi-platform and inter-disciplinary surveillance networks monitoring tools systems. It is especially aimed to emphasize the interaction between environmental processes occurring at different scales. In particular, a special attention is devoted to the studies focused on the development of new techniques and integrated instrumentation for multiscale monitoring high natural risk areas, such as: volcanic, seismic, energy exploitation, slope instability, floods, coastal instability, climate changes and other environmental context.
We expect contributions derived from several disciplines, such as applied geophysics, geology, seismology, geodesy, geochemistry, remote and proximal sensing, volcanology, geotechnical, soil science, marine geology, oceanography, climatology and meteorology. In this context, the contributions in analytical and numerical modeling of geological and environmental processes are also expected.
Finally, we stress that the inter-disciplinary studies that highlight the multiscale properties of natural processes analyzed and monitored by using several methodologies are welcome.

Share:
Co-organized by AS4/CL2/GM2/GMPV9/NH8/NP3/OS4/SM5/SSS10
Convener: Pietro Tizzani | Co-conveners: Antonello Bonfante, Francesca Bianco, Raffaele Castaldo, Nemesio M. Pérez, Annalisa Cappello
Displays
| Attendance Fri, 08 May, 08:30–12:30 (CEST)
ITS2.7/HS12.2

Plastic pollution in freshwater systems is a widely recognized global problem with severe environmental risks. Besides the direct negative effects on freshwater ecosystems, freshwater plastic pollution is also considered the dominant source of plastic input into the oceans. However, research on plastic pollution has only recently expanded from the marine environment to freshwater systems, and therefore data and knowledge from field studies are still limited in regard to freshwater. This knowledge gap must be addressed to understand the dispersal and distribution of plastics and their fate in the oceans, as well as forming effective mitigation measures.

In this session, we explore the current state of knowledge and activities on (macro to micro) plastic in freshwater systems, including aspects such as:

• Plastic monitoring techniques;
• Case studies;
• Source to sink investigations;
• Transport processes of plastics in watersheds;
• Novel measurement approaches, such as citizen science or remote sensing;
• Modelling approaches for local and/or global river output estimations;
• Legislative/regulatory efforts, such as monitoring programs and measures against plastic pollution in freshwater systems.

Share:
Co-organized by BG4/GI6/NH8
Convener: Tim van Emmerik | Co-conveners: Daniel González-Fernández, Merel KooiECSECS, Freija Mendrik, Alice HortonECSECS, Simon Dixon, Imogen Napper, Manousos Valyrakis
Displays
| Attendance Tue, 05 May, 14:00–18:00 (CEST)
G3.4

Low-lying coastal areas can be an early casualty to accelerating rates of sea-level rise, especially if land subsidence enhances such rates. More and more studies indicate that land subsidence due to natural and anthropogenic causes, including excessive groundwater extraction from coastal aquifers, peat oxidation due to surface water drainage through land reclamation, urbanization and agricultural use, as well as sediment starvation due to construction of dams and artificial levees, have caused damages to wetland ecosystems and increased flooding risk. While sea-level rise is a global issue and requires a global collaborative response, natural and anthropogenic coastal subsidence develops mainly at the local to regional scale, and its causes and severity vary substantially from place to place. Therefore, specific communities living on coastal areas can try to offset or reduced land subsidence.

The combination of geological and historical measurements and data from ongoing monitoring techniques is required to understand all drivers of coastal land motion and their contributions to past, present, and future subsidence. Research on coastal subsidence encompasses multidisciplinary expertise, requiring measuring and modeling techniques from geology, geodesy, natural hazards, oceanography, hydrogeology, and geomechanics. In this session, we want to bring together the expertise of all the involved disciplines. We invite contributions on all aspects of coastal subsidence research including recent advances on i) measurement through ground-based and remote sensing techniques, ii) numerical models, iii) their applicability to distinguish between the different drivers contributing to land subsidence, and iv) quantification of coastal hazards associated to relative sea-level rise. In particular, efforts towards characterizing human intervention on coastal land motion are welcome.

Share:
Co-organized by HS13/NH8/OS2
Convener: Makan KaregarECSECS | Co-conveners: Simon Engelhart, Thomas FrederikseECSECS, Pietro Teatini, Niamh CahillECSECS
Displays
| Attendance Fri, 08 May, 10:45–12:30 (CEST)
ITS2.2/GM12.5

Documenting the diversity of human responses and adaptations to climate, landscapes, ecosystems, natural disasters and the changing natural resources availability in different regions of our planet, cross-disciplinary studies in human-landscape interaction provide valuable opportunities to learn from the past. This session is targeted at providing a platform for scientists with common interests in geomorphology and geoarchaeology and, in particular, the complex and integrated nature of the relationship between landforms, geomorphological processes and societies during the Anthropocene, and how this has developed over time at different spatial and temporal scales.

This session seeks related interdisciplinary papers and specific geomorphological or geoarchaeological case-studies that deploy various approaches and tools to address the reconstruction of former and present human-environmental interactions from the Palaeolithic period through the modern. Topics related to records of the Anthropocene from Earth and archaeological science perspectives are welcome. We are inviting contributions that focus on the two-way interactions between geomorphological processes/landforms and human activity. These should show how the various factors of the physical environment interact with the Anthroposphere, and, in turn, how population and individuals may affect (and change) these factors. Furthermore, contributions may include (but are not limited to) insights about how people have coped with environmental disasters or abrupt changes; defining sustainability thresholds for farming or resource exploitation; distinguishing the baseline natural and human contributions to environmental changes. In this context, topics of different fields may be addressed in the session such as landform evolution, landscape sensitivity and resilience in the overall context of the interrelation between geomorphology and society, geohazards, geoheritage and conservation, geomorphological responses to (and evidence for) environmental change, and applied geomorphology. Moreover, issues of scale and hierarchies may be addressed, and methods and applications of dynamic rather than equilibrium ideas and metaphors. Ultimately, we would like to understand how strategies of human resilience and innovation can inform our modern strategies for addressing the challenges of the emerging Anthropocene, a time frame dominated by human modulation of surface geomorphological processes and hydroclimate.

Share:
Co-organized by BG3/CL4/NH8/SSP1/SSS3
Convener: Julia MeisterECSECS | Co-conveners: André Kirchner, Guido Stefano MarianiECSECS, Kathleen Nicoll, Hans von Suchodoletz, Sanja Faivre, Sven Fuchs, Margreth Keiler
Displays
| Attendance Mon, 04 May, 14:00–18:00 (CEST)
ITS4.9/ESSI2.17

Most of the processes studied by geoscientists are characterized by variations in both space and time. These spatio-temporal phenomena have been traditionally investigated using linear statistical approaches, as in the case of physically-based models and geostatistical models. Additionally, the rising attention toward machine learning, as well as the rapid growth of computational resources, opens new horizons in understanding, modelling and forecasting complex spatio-temporal systems through the use of stochastics non-linear models.
This session aims at exploring the new challenges and opportunities opened by the spread of data-driven statistical learning approaches in Earth and Soil Sciences. We invite cutting-edge contributions related to methods of spatio-temporal geostatistics or data mining on topics that include, but are not limited to:
- advances in spatio-temporal modeling using geostatistics and machine learning;
- uncertainty quantification and representation;
- innovative techniques of knowledge extraction based on clustering, pattern recognition and, more generally, data mining.
The main applications will be closely related to the research in environmental sciences and quantitative geography. A non-complete list of possible applications includes:
- natural and anthropogenic hazards (e.g. floods; landslides; earthquakes; wildfires; soil, water, and air pollution);
- interaction between geosphere and anthroposphere (e.g. land degradation; urban sprawl);
- socio-economic sciences, characterized by the spatial and temporal dimension of the data (e.g. census data; transport; commuter traffic).

Share:
Co-organized by GM2/HS12/NH8/NP4/SSS12
Convener: Federico AmatoECSECS | Co-conveners: Fabian GuignardECSECS, Luigi LombardoECSECS, Marj Tonini
Displays
| Attendance Fri, 08 May, 16:15–18:00 (CEST)
GI4.6

Snow plays an essential role in the climatic and environmental challenges of the 21st century. The snow cover represents a key source of global water supply and climate regulation, and has shown high sensitivity to a warming climate. The amount of collected snow information is also constantly increasing due to novel automated methods for cheaper and easier measurements, especially imagery. During the last decades, instrumentation and measurement techniques, especially remote sensing, have advanced fast, providing significant amount of new information about the extent and properties of snow (e.g. snow water equivalent, (SWE), albedo, reflectance, microstructure, and impurities). In addition, novel technologies such as unmanned aerial vehicles (UAVs) and webcams provide new opportunities and challenges. Optimization and agreement on sampling strategies are important to get spatially distributed data at different scales, and ensure broad use of the acquired data. Data management has become an important issue after general open data policy, where data sets should be available and usable for other users. A large variety of NWP and hydrological models or operational applications routinely make use of snow data to improve their performance. Forecasting snow related hazards in Europe is mostly performed at the country or regional level, and heavily relies on the concurrent meteorological factors and snowpack properties, which are usually acquired from point measurements or physical models. A big challenge is bridging information from microstructural scales of the snowpack up to the grid resolution in models and then to provide knowledge-based information on potential impacts to society, economy and safety (e.g. hydro-power, water availability, transportation, tourism, flooding and avalanches). In this session we would like discuss recent developments and progresses on (1) Snow data collection, curation, and management including harmonized observation techniques for several snow parameters and remote sensing snow observations by applying novel techniques, (2) Snow models, satellite-derived snow products, and data assimilation including improved snow modelling and prediction at different scales taking into account macro and microscale snow properties and (3) Monitoring snow-related hazards and extreme events including latest reanalysis and satellite data sets and models to predict and forecast extreme events and snow-related natural hazards.

Share:
Co-organized by CL5/HS13/NH8
Convener: A.N. Arslan | Co-conveners: Leena LeppänenECSECS, Carlo De Michele, Jürgen Helmert
Displays
| Attendance Thu, 07 May, 16:15–18:00 (CEST)