Union-wide
Inter- and Transdisciplinary Sessions
Disciplinary sessions AS–GM
Disciplinary sessions GMPV–TS

Session programme

SM2

SM – Seismology

Programme group chair: Philippe Jousset

SM2 – Deformation, Faulting, and Earthquake Processes (incl. seismotectonics, geodynamics, earthquake source physics)

Programme group scientific officers: P. Martin Mai, Henriette Sudhaus

SM2.1

This session covers the broad field of earthquake source processes, and
includes the topics of imaging the rupture kinematics and simulating
earthquake dynamics using numerical methods, to develop a deeper
understanding of earthquake source physics. We also invite presentation
that link novel laboratory experiments to earthquake dynamics, and
studies on earthquake scaling properties.

Earthquake sources are imaged using seismic data and surface deformation
measurements (e.g.GPS and InSAR) to estimate rupture properties on
faults and fault systems. Each data set and each method has its strength
and limitations in the context of the source-inversion problem, but the
uncertainties are often not well quantified and the robustness of the
source models not well known.
The session invites contributions that address the source-inversion
problem and provide new methods, innovative applications, and
thought-provoking new ideas. Contributions are welcome that make use of modern
computing paradigms and infrastructure to tackle large-scale forward
simulation of earthquake process, but also inverse modeling to retrieve
the rupture process with proper uncertainty quantification.

Earthquake source imaging, numerical modeling of rupture dynamics, and
source-scaling relations help to understand earthquake source processes.
Furthermore, new numerical modeling approaches for multi-scale
earthquake physics, including earthquake-cycle simulations, may include
fault-zone evolution and even target seismic hazard assessment. The
question that these lines of research are targeting are profound and of
first-order socio-economic relevance:

Which first-order physical processes control, at a given space-time
scale, the macroscopic evolution of dynamic rupture and its seismic
radiation? Is the physics of fault rupture the same for large and small
earthquakes? How can modern earthquake hazard assessment profit from a
deeper understanding of rupture dynamics? Which source processes need to
be considered to better understand, and then model, tsunami generation,
triggering phenomena, induced seismicity and earthquake cycles?

Within this framework our session also provides a forum to discuss case
studies of kinematic or dynamic source modeling of recent significant
earthquakes.

Share:
Co-organized by EMRP1/NH4
Convener: P. Martin Mai | Co-conveners: Alice-Agnes Gabriel, Henriette Sudhaus, Martin Vallée
Displays
| Attendance Thu, 07 May, 08:30–10:15 (CEST)
SM2.2

Typical practice for seismic hazard assessment (SHA) in stable continental regions (SCRs) uses a global-analogues approach to amalgamate seismicity data from SCRs globally. This approach is premised on all SCR crust sharing the same seismogenic potential. Is this approach valid? How can we better define seismogenic analogues in low strain regions? Are earthquake recurrence and long-term slip rates meaningful concepts in these settings for the purpose of seismic hazard analysis?
This session seeks to integrate paleoseismic, geomorphic, geodetic, geophysical and seismological datasets to provide insight into the earthquake cycle in low-strain regions. It will draw upon recent advances in high-resolution topography, geochronology, satellite geodesy techniques, subsurface imaging techniques, longer seismological records, high-density geophysical networks and unprecedented computational power to explore the driving mechanisms for earthquakes in low-strain settings. A comparison of the range of seismic behavior as a function of the different geodynamic attributes of these settings (e.g., crustal age, structure, stress, geology, antecedent
tectonics (inheritance); evolving boundary conditions; Quaternary processes (glaciation), etc), may provide a means to better refine and constrain the types of features or active processes that warrant treatment as analogues for seismic hazard assessment. We welcome contributions that (1) present new observations that place constraints on earthquake occurrence in low-strain regions, (2) explore patterns of stable or temporally varying earthquake recurrence, and (3) provide insight into the mechanisms that control earthquakes in regions of slow deformation via observation and/or
modeling.

Public information:
The session will be hosted both on Zoom and on the EGU text-based chat.

Schedule :
- 10:45-11:15 : Zoom session (see link below) - Presentations only (no questions and answers, this will take place in the chat), presenters are invited to share their screen
- 11:15-12:30 : EGU chat session - questions and answers for all presenters

------------------------------------- Zoom session link ------------------------------------
Join from PC, Mac, Linux, iOS or Android: https://videoconf-colibri.zoom.us/j/98788480483
Or iPhone one-tap: 308810988,98788480483# or 211202618,98788480483#
Or Telephone:
Dial: +351 308 810 988 (Portugal Toll) or +351 211 202 618 (Portugal Toll)
Meeting ID: 987 8848 0483
International numbers available: https://videoconf-colibri.zoom.us/u/adNZCcmlD1
------------------------------------------------------------------------------------------------------

The Zoom session will start with a 10 minute presentation by Eulalia Gracia for a solicited talk. It will be followed by 6 3-minute long presentations.
Then, we will switch to the text-based chat for questions and answers ; 5 minutes for each presentation. Each presentation will be introduced by the conveners.

The schedule is given below.

ZOOM (10:45-11:15) -
10:45-10:55 E. Gracia Earthquake crisis unveils the growth of an incipient continental fault system
10:55-10:58 J. Ritz The Mw4.9 Le Teil surface-rupturing earthquake in southern France: New insight on seismic hazard assessment in stable continental regions
10:58-11:01 A. Vallage Full characterization of the ML 5.4 2019/11/11 Le Teil earthquake in France based on a multi-technology approach
11:01-11:04 T. King The 2016 Mw 6.1 Petermann Ranges earthquake rupture, Australia: another “one-off” stable continental region earthquake
11:04-11:07 C.-H. Tsai Palaeo-earthquake magnitudes on the Dzhungarian fault, N. Tien shan, and implications for the rupture processes of intraplate strike-slip faults
11:07-11:10 C. Daxer Quantitative paleoseismology in Carinthia, Eastern Alps: Calibrating the lacustrine sedimentary record with historical earthquake data
11:10-11:13 M. Moorkamp Integrated geophysical analysis of the April 2017 Moiyabana intra-plate earthquake, Botswana

TEXT-BASED EGU CHAT (11:15-12:30)
11:15-11:20 E. Gracia Earthquake crisis unveils the growth of an incipient continental fault system
11:20-11:25 O. Olesen Large magnitude earthquakes of late Holocene age in the Precambrian of Finnmark, Northern Norway
11:25-11:30 J. Ritz The Mw4.9 Le Teil surface-rupturing earthquake in southern France: New insight on seismic hazard assessment in stable continental regions
11:30-11:35 A. Vallage Full characterization of the ML 5.4 2019/11/11 Le Teil earthquake in France based on a multi-technology approach
11:35-11:40 T. King The 2016 Mw 6.1 Petermann Ranges earthquake rupture, Australia: another “one-off” stable continental region earthquake
11:40-11:45 C.-H. Tsai Palaeo-earthquake magnitudes on the Dzhungarian fault, N. Tien shan, and implications for the rupture processes of intraplate strike-slip faults
11:45-11:50 H. Choi What if a larger earthquake would occur at the causative fault of the Gyeongju earthquake with ML 5.8 on September 11, 2016 in South Korea?
11:50-11:55 J. Kley Seismotectonic regions for Germany - Concept and results
11:55-12:00 D. Clark Neotectonic constraint on models of strain localisation within Australian Stable Continental Region (SCR) crust
12:05-12:10 C. Daxer Quantitative paleoseismology in Carinthia, Eastern Alps: Calibrating the lacustrine sedimentary record with historical earthquake data
12:10:12:15 R. Minetto High-resolution catalog of the the Maurienne Swarm (French Alps) based on template matching and double-different relocation
12:15-12:20 M. Moorkamp Integrated geophysical analysis of the April 2017 Moiyabana intra-plate earthquake, Botswana
12:20-12:25 C. Reyes-Carmona Evidence of recent activity in the Camorro Fault (Central Betics, Southern Spain)

12:25-12:30 - Additional questions and time for discussion

Share:
Co-organized by NH4/TS5
Convener: Pierre Arroucau | Co-conveners: Beau WhitneyECSECS, Susana Custódio, Stéphane Baize, Ryan Gold, Dan Clark, Gordana Vlahovic, Sierd Cloetingh
Displays
| Attendance Fri, 08 May, 10:45–12:30 (CEST)
TS4.2

Faults are complex three-dimensional geological objects that grow and change their properties over time (i.e., fourth dimension). Therefore, their thorough understanding intrinsically requires a three- and four- rather than two-dimensional analysis. In this session, we invite contributions that address the geometrical, kinematical, and the underlying mechanical characteristics of faults, by considering their inherent three- and four-dimensional nature. Considerations in this new light will bring us closer to fully address some of the fundamental questions in fault analysis: how do faults initiate? How do they evolve in space and time? How do they accommodate displacement and at what slip rates? Ideally, contributions should arise from analysis of a broad spectrum of data such as, among others, geophysical imaging, earthquake seismicity, outcrop (including novel virtual outcrop geology), and analogue and numerical modelling data. The integration of these different data types will provide insights on characteristics of faults at different scales and resolutions, and on their evolution at different time frames. We encourage contributions that explore the repercussions that a three- and four- rather than two-dimensional approach to the study of faults can have on a broad range of practical problems such as, among others, earthquake hazard assessment and fluid flow.

Share:
Co-organized by NH4/SM2
Convener: Giovanni CamanniECSECS | Co-conveners: Efstratios DelogkosECSECS, Michael KettermannECSECS, Vincent Roche, David Tanner
Displays
| Attendance Mon, 04 May, 16:15–18:00 (CEST)
SM2.5

Since 2004, there have been a number of large subduction earthquakes whose unexpected rupture features contributed to the generation of devastating tsunamis. The impact that these events have had on human society highlights the need to improve our knowledge of the key mechanisms behind their origin. Advances in these areas have led to progress in our understanding of the most important parameters affecting tsunamigenesis.

With increasing geophysical data, new descriptions of faulting and rupture complexity are being hypothesized (e.g., spatial and temporal seismic rupture heterogeneity, fault roughness, geometry and sediment type, interseismic coupling, etc.). Rock physicists have proposed new constitutive laws and parameters based on a new generation of laboratory experiments, which simulate close to natural seismic deformation conditions on natural fault samples. In addition, advances in numerical modelling now allow scientists to test how new geophysical observations, e.g. ocean drilling projects and laboratory analyses, influence subduction zone processes over a range of temporal and spatial scales (i.e., geodynamic, seismic cycling, earthquake rupture, wave propagation modelling).

In light of these advances, this session has a twofold mission: i) to integrate recent results from different fields to foster a comprehensive understanding of the key parameters controlling the physics of large subduction earthquakes over a range of spatial and temporal scales; ii) to identify how tsunami hazard analysis can benefit from using a multi-disciplinary approach.

We invite abstracts that enhance interdisciplinary collaboration and integrate observations, rock physics experiments, analog- and numerical modeling, and tsunami hazard.

Share:
Co-organized by EMRP1/NH5/TS5
Convener: Elena SpagnuoloECSECS | Co-conveners: Yoshi Ito, Shane Murphy, Fabrizio Romano
Displays
| Attendance Thu, 07 May, 14:00–15:45 (CEST)
TS7.4

The Alpine-Himalayan orogenic belt is one of the largest and most prominent suture zones on Earth. The belt ranges from the Mediterranean in the west to Indonesia in the east. It results from the subduction and closing of different branches of the Tethyan Oceanic Realm and the subsequent collision of the African, Arabian and Indian continental plates with Eurasia. Its long-lasting geological record of complex interactions among major and smaller plates, featuring the presence of subduction zones at different evolutionary stages, has progressively grown as a comprehensive test site to investigate fundamental plate tectonics and geodynamic processes with multi-disciplinary studies. Advances in a variety of geophysical and geological fields provide a rich and growing set of constraints on the crust-lithosphere and mantle structure, as well as tectonics and geodynamic evolution of the entire mountain belt

We welcome contributions presenting new insights and observations derived from different perspectives like geology (stratigraphy, petrology, geochronology, geochemistry, tectonics and geomorphology), geophysics (seismicity, seismic imaging, seismic anisotropy, gravity), geodesy (GPS, InSAR), modelling (numerical and analogue), risk assessment (earthquake, volcanism), as well as from multi-disciplinary studies.

Keynote presentation by Boris Kaus (University of Mainz)

Public information:
The discussion during the chat sessions will follow an order based on location (from East to West), and divide the abstracts such that in the first block we will go from the Himalaya region to Turkey-Anatolia-Cyprus and the East Mediterranean Basin, and in the second block, we will cover the Mediterranean from the Western side of the Black Sea (i.e. Bulgaria) to the Westernmost Mediterranean. The preliminary order (hoping that authors upload their display) is:
14:00-15:45
1· Jatupohnkhongchai et al.
2· Bai et al.
3· Chen et al.

4· Knight et al.
5· Stoner et al.
6· Wei Li et al.

7· Barbero et al.
8 Lom et al.
9· Simmonds et al.
10· Mahleqa Rezaei et al.

11· Sağlam et al.
12· Mueller et al.
13· Gürer et al.
14· Nirrengarten et al.

BREAK (30 minutes)

16:15-18:00
1· de Leeuw et al.
2· Balkanska and Georgiev (?)

3· Faucher et al.
4· Molnár et al.
5· Stanković et al.

6· Schneider and Balen
7· Chang et al.
8· Kaus et al.
9· El-Sharkawy et al.
10· Agostini et al.

11· Gimeno et al.
12· de la Peña et al.
13· Negredo et al.
14· Jiménez-Munt et al.
15· Kumar et al.

Share:
Co-organized by GD7/GMPV11/SM2
Convener: Ágnes Király | Co-conveners: Derya GürerECSECS, Marc Hässig, Claudia Piromallo
Displays
| Attendance Fri, 08 May, 14:00–15:45 (CEST), Attendance Fri, 08 May, 16:15–18:00 (CEST)
GD5.1

Subduction drives plate tectonics, generating the major proportion of subaerial volcanism, releasing >90% seismic moment magnitude, forming continents, and recycling lithosphere. Therefore, it is the most important geodynamical phenomenon on Earth and the major driver of global geochemical cycles. Seismological data show a fascinating range in shapes of subducting slabs. Arc volcanism illustrates the complexity of geochemical and petrological phenomena associated with subduction.

Numerical and laboratory modelling studies have successfully built our understanding of many aspects of the geodynamics of subduction zones. Detailed geochemical studies, investigating compositional variation within and between volcanic arcs, provide further insights into systematic chemical processes at the slab surface and within the mantle wedge, providing constraints on thermal structures and material transport within subduction zones. However, with different technical and methodological approaches, model set-ups, inputs and material properties, and in some cases conflicting conclusions between chemical and physical models, a consistent picture of the controlling parameters of subduction-zone processes has so far not emerged.

This session aims to follow subducting lithosphere on its journey from the surface down into the Earth's mantle, and to understand the driving processes for deformation and magmatism in the over-riding plate. We aim to address topics such as: subduction initiation and dynamics; changes in mineral breakdown processes at the slab surface; the formation and migration of fluids and melts at the slab surface; primary melt generation in the wedge; subduction-related magmatism; controls on the position and width of the volcanic arc; subduction-induced seismicity; mantle wedge processes; the fate of subducted crust, sediments and volatiles; the importance of subducting seamounts, LIPs, and ridges; links between near-surface processes and slab dynamics and with regional tectonic evolution; slab delamination and break-off; the effect of subduction on mantle flow; and imaging subduction zone processes.

With this session, we aim to form an integrated picture of the subduction process, and invite contributions from a wide range of disciplines, such as geodynamics, modelling, geochemistry, petrology, volcanology and seismology, to discuss subduction zone dynamics at all scales from the surface to the lower mantle, or in applications to natural laboratories.

Share:
Co-organized by GMPV2/SM2/TS7
Convener: Oğuz H Göğüş | Co-conveners: Taras Gerya, Ágnes Király, Wim Spakman
Displays
| Attendance Wed, 06 May, 08:30–10:15 (CEST)
TS5.3

Earthquake mechanics is controlled by a spectrum of processes covering a wide range of length scales, from tens of kilometres down to few nanometres. While the geometry of the fault/fracture network and its physical properties control the global stress distribution and the propagation/arrest of the seismic rupture, earthquake nucleation and fault weakening is governed by frictional processes occurring within extremely localized sub-planar slipping zones. The co-seismic rheology of the slipping zones themselves depends on deformation mechanisms and dissipative processes active at the scale of the grain or asperity. The study of such complex multiscale systems requires an interdisciplinary approach spanning from structural geology to seismology, geophysics, petrology, rupture modelling and experimental rock deformation. In this session we aim to convene contributions dealing with different aspects of earthquake mechanics at various depths and scales such as:

· the thermo-hydro-mechanical processes associated with co-seismic fault weakening based on rock deformation experiments, numerical simulations and microstructural studies of fault rocks;
· the study of natural and experimental fault rocks to investigate the nucleation mechanisms of intermediate and deep earthquakes in comparison to their shallow counterparts;
· the elastic, frictional and transport properties of fault rocks from the field (geophysical and hydrogeological data) to the laboratory scale (petrophysical and rock deformation studies);
· the internal architecture of seismogenic fault zones from field structural survey and geophysical investigations;
· the modeling of earthquake ruptures, off-fault dynamic stress fields and long-term mechanical evolution of realistic fault networks;
· the earthquake source energy budget and partitioning between fracture, friction and elastic wave radiation from seismological, theoretical and field observations.
· the interplay between fault geometry and earthquake rupture characteristics from seismological, geodetic, remote sensed or field observations;

We particularly welcome novel observations or innovative approaches to the study of earthquake faulting. Contributions from early career scientists are solicited.

Share:
Co-organized by EMRP1/SM2
Convener: Matteo Demurtas | Co-conveners: Stefano Aretusini, Michele Fondriest, Francois PasselegueECSECS, Marco Maria ScuderiECSECS
Displays
| Attendance Tue, 05 May, 10:45–12:30 (CEST)
TS5.4

Tectonic faults accommodate plate motion through various styles of seismic and aseismic slip spanning a wide range of spatiotemporal scales. Understanding the mechanics and interplay between seismic rupture and aseismic slip is central to seismotectonics as it determines the seismic potential of faults. In particular, unraveling the underlying physics controlling these styles of deformation bears a great deal in earthquakes hazards mitigation especially in highly urbanized regions.
In partnership with the AGU Tectonophysics section, we invite contributions from observational, experimental, geological and theoretical studies that explore the diversity and interplay among seismic and aseismic slip phenomena in various tectonic settings, including the following questions: (1) How does the nature of creeping faults change with the style of faulting, loading rate, and other factors? (2) Are different slip behaviors well separated in space, or can the same fault areas experience different failure modes? (3) Is there a systematic spatial or temporal relation between different types of slip?

Invited speakers:
- Chris Marone, Penn State. "Fault healing plays a key role in creating the spectrum of tectonic faulting styles from seismic to aseismic slip "

- Adriano Gualandi, Caltech. "Towards Slow Earthquakes Forecasting"

Share:
Co-organized by GD9/SM2, co-sponsored by AGU-Tectonophysics
Convener: Jorge Jara | Co-conveners: Blandine GardonioECSECS, Luca Dal Zilio, Allie HutchisonECSECS, Valere Lambert, Sylvain Michel, Harsha S. Bhat
Displays
| Attendance Tue, 05 May, 14:00–15:45 (CEST)
TS14.2

Tectonic models represent hypothesised approximations of past geological events that best fit and explain a pre-defined collection of data points. Incorporation of geological observations with an understanding and consideration of geodynamic concepts, geological processes, and physical properties of geological materials ensures that empirical models are consistent with physics and mechanics, and that numerical models are consistent with field observations and petrological constraints. Integrating these constraints and concepts within a plate kinematic framework that considers the size, distribution and past and present motions of tectonic plates ensures that models are consistent with global plate tectonics. Incorporating this information with interpretations of the distribution of subducted slabs and plumes in the upper and lower mantle allows for construction of tectonic models that consider the global tectonic-mantle system. We welcome state-of-the-art, multi-disciplinary, and multi-scale studies that combine geological and geophysical constraints from the bedrock record with interpretations of deep mantle structure and/or plate kinematic datasets to investigate geodynamic events of past and present. These may include, but are not limited to studies of rifting and ocean spreading, subduction, orogeny and terrane accretion, and dynamic topography. We expect this session to include a diverse range of multi-disciplinary studies united by a common goal of understanding the geological evolution of our planet’s tectonic-mantle system.

Share:
Co-organized by GD1/SM2/SSP2
Convener: Andrew ParsonsECSECS | Co-conveners: Dennis Brown, Mathew DomeierECSECS, Stephen Johnston, Lucia Perez-Diaz
Displays
| Attendance Fri, 08 May, 10:45–12:30 (CEST)
SM2.11

The Mediterranean region spanning from the Betic Cordillera and the Alboran Sea to the Levantine and Dead Seas is the most tectonically active region of Europe. Over the last decades several moderate to large magnitude earthquakes affected the Mediterranean regions often causing substantial economical and sometimes human losses. The scientific community is developing a better understanding of the crustal processes that may drive seismic sequences thanks to denser and higher quality geophysical networks, multidisciplinary experiments and rapid field deployments in the aftermath of a mainshock. This allowed increasingly larger and more accurate datasets that can be exploited to improve the knowledge of crustal seismogenic processes. Over the years, this effort lead to the identification of seismic gaps, the production of seismic hazard maps and, not least, the characterization of seismogenic structures. Yet, each seismic sequence seems to be strongly affected by the local tectonics and by the interplay of crustal processes.

In this session we welcome contributions aimed at a better understanding of recent seismic sequences that may help improving our still fragmentary knowledge of earthquake nucleation processes. We are interested in new results from earthquakes that occurred both in front-arc and back-arc regions along the convergence zones between Africa and Europe, in the Apennines and other Mediterranean regions and their comparison with major historical earthquakes. This includes geophysical experiments, analyses of recent seismic sequences, and multidisciplinary studies focusing on the identification, characterisation and monitoring of seismic gaps. We also encourage analyses of fluid-driven seismic sequences and offshore campaigns characterizing key regional faults.

Share:
Co-organized by GD7/TS5
Convener: Matteo Lupi | Co-conveners: Athanassios Ganas, Eulàlia Gràcia Mont, Marc-Andre Gutscher, Fabio Villani
Displays
| Attendance Mon, 04 May, 14:00–15:45 (CEST)
TS5.5

The broad scale tectonics of the Eastern Mediterranean are dominated by the interaction of the Nubian and Arabian plates with the Eurasian plate. This complex tectonic frame exhibit almost all type of plate boundary conditions such as continental convergence and extension, oceanic subduction, and continental transform. The evolution and present deformation are constrained by diverse geological, geophysical, and geodetic observations and have been explained by different hypotheses, such as (a) tectonic escape system caused by the post-collisional convergence of Eurasian and Arabian plates creating forces at its boundaries with gravitational potential differences of the Anatolian high plateau (b) asthenospheric flow dragging the circular flow of lithosphere from the Levant to Anatolia in the east and the Aegean in the west, (c) slab pull of the Hellenic subduction, (d) mantle upwelling underneath Afar and with the large-scale flow associated with a whole mantle, Tethyan convection cell, (e) or combinations of these mechanisms for the Eastern Mediterranean. Naturally, this tectonic setting generates frequent earthquakes with large magnitudes (M > 7), forming a natural laboratory on understanding the crustal deformation, and crust-mantle interactions for various disciplines of active tectonics.
Multi-disciplinary studies, especially within the last three decades, have made significant contributions to our understanding of the processes on the crustal deformation, and interaction of the mantle with the crustal processes of this region. With this session, we aim to bring together the recent findings of these studies, thus we welcome/invite contributions from a wide range of disciplines including, but not limited to, neotectonics, seismology, tectonic geodesy (e.g. GNSS, InSAR), paleoseismology, tectonic geomorphology, remote sensing, structural geology and geodynamic modelling, which geographically cover the Eastern Mediterranean region, including Anatolia-Aegean Block, Caucasus, Iran, Middle East and Greece.

Invited talks:
- Jonathan Weiss - Measuring Anatolian plate velocity and strain with InSAR: Implications for fault-locking, seismic hazard, and crustal dynamics.
- Pierre Henry - Contrasting seismogenic behaviors on the North Anatolian Fault in the Sea of Marmara

Share:
Co-organized by GD7/NH4/SM2
Convener: Cengiz Zabcı | Co-conveners: Michael Floyd, A. Ozgun Konca, Onno Oncken, Philippe Vernant
Displays
| Attendance Thu, 07 May, 14:00–18:00 (CEST)
G3.6

The WEGENER initiative was started in 1981 with the aim of creating an interdisciplinary forum supporting geodynamic studies by means of space and terrestrial geodetic techniques. Therefore, WEGENER promotes the establishment of a consistent framework leading from data acquisition, to data analysis, modeling and interpretation of the results. These activities provide key information to a broad range of phenomena that have critical implications for society, particularly in the field of natural hazards and climate change using techniques such as GNSS, InSAR, LiDAR, space/air/terrestrial gravimetry and ground-based geodetic observations.
In this session, we seek contributions that improve our understanding of geodynamical processes and crustal deformations at the local-to-global scale by means of geodetic techniques and innovative modeling approaches. Contributions showing the benefit of integrating geodetic and complementary geophysical, hydrological, geological, oceanographical and climatological information are also welcome. Relevant submissions may focus on the earthquake cycle, volcanic processes, sea-level changes, fluid redistributions and near surface motions such as landslides and subsidence. We also encourage contributions discussing the realization and outcomes of Supersites in the frame of the GEO initiative, as well as reports of the establishment of new geodetic networks in tectonically active areas.
Among other activities, the WEGENER will contribute to the joint IAG-IASPEI sub-commission on Seismo-Geodesy.

Share:
Co-organized by GD10/SM2
Convener: Sara BruniECSECS | Co-conveners: Takuya Nishimura, Jean-Mathieu Nocquet, Haluk Ozener, Susanna Zerbini
Displays
| Attendance Thu, 07 May, 14:00–15:45 (CEST)
NH5.1

Tsunamis can produce catastrophic damage on vulnerable coastlines, essentially following major earthquakes, landslides or atmospheric disturbances. After the disastrous tsunamis in 2004 and 2011, tsunami science has grown significantly, opening new fields of research for various domains, and also in regions where the tsunami hazard was previously underestimated.
Numerical modeling, complemented with laboratory experiments, are essential to quantify the tsunami hazard. To this end, it is essential to rely on complete databases of past tsunami observations, including both historical events and results of paleotsunami investigations. Furthermore, a robust hazard analysis has to take into account uncertainties and probabilities with the more advanced approaches such as PTHA.
Because the vulnerability of populations, of infrastructures and of the built environment in coastal zones increases, integrated plans for tsunami risk prevention and mitigation should be encouraged in any exposed coastline, consistent with the procedures now in place in a growing number of Tsunami Warning System.

The tsunami session welcomes multidisciplinary contributions covering any of the aspects mentioned here, encompassing field data, regional hazard studies, observation databases, numerical modeling, risk studies, real time networks, operational tools and procedures towards a most efficient warning.

A focus on recent tsunami events all over the globe is encouraged, as well as on the achievements of recent research and operational projects.

Share:
Co-organized by OS2/SM2
Convener: Hélène Hébert | Co-conveners: Alberto Armigliato, Miquel Canals, Ira Didenkulova
Displays
| Attendance Wed, 06 May, 14:00–18:00 (CEST)