Stochastic modeling of the oceanic mesoscale eddies
- 1Centre Inria Rennes - Bretagne Atlantique, France
- 2Institut des Géosciences de l'Environnement, Grenoble, France
In this work, a stochastic representation [Bauer2020a, Bauer2020b] based on a physical transport principle is proposed to account for mesoscale eddy effects on the the large-scale oceanic circulation. This stochastic framework [Mémin2014] arises from a decomposition of the Lagrangian velocity into a time-smooth component and a highly oscillating noise term. One important characteristic of this random model is that it conserves the energy of any transported tracer. Such an energy-preserving representation has been successfully implemented in a well established multi-layered quasi-geostrophic dynamical core (http://www.q-gcm.org). The empirical spatial correlation of the small-scale noise is estimated from the eddy-resolving simulation data. In particular, a sub-grid correction drift has been introduced in the noise due to the bias ensuing from the coarse-grained procedure. This non intuitive term seems quite important in reproducing on a coarse mesh the meandering jet of the wind-driven double-gyre circulation. In addition, a new projection method has been proposed to constrain the noise living along the iso-surfaces of the vertical stratification. The resulting noise enables us to improve the intrinsic low-frequency variability of the large-scale current. From some statistical studies and energy transfers analysis, this improvement is well demonstrated.
- [Bauer2020a] W. Bauer, P. Chandramouli, B. Chapron, L. Li, and E. Mémin. Deciphering the role of small-scale inhomogeneity on geophysical flow structuration: a stochastic approach. Journal of Physical Oceanography, 50(4):983-1003, 2020a.
- [Bauer2020b] W. Bauer, P. Chandramouli, L. Li, and E. Mémin. Stochastic representation of mesoscale eddy effects in coarse-resolution barotropic models. Ocean Modelling, 151:101646 (2020b).
- [Mémin2014] E. Mémin. Fluid flow dynamics under location uncertainty. Geophysical & Astrophysical Fluid Dynamics, 108(2):119-146, 2014.
How to cite: Li, L., Deremble, B., Lahaye, N., and Mémin, E.: Stochastic modeling of the oceanic mesoscale eddies, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-15010, https://doi.org/10.5194/egusphere-egu21-15010, 2021.