EGU21-3701
https://doi.org/10.5194/egusphere-egu21-3701
EGU General Assembly 2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.

Effects of Temperature increase on N2O Emissions from Intertidal Area along the East China Coast

Shu Chen and Dongqi Wang
Shu Chen and Dongqi Wang
  • East China Normal University, School of Geographical Sciences, Key Laboratory of Geographic Information Science (Ministry of Education), Shanghai, China (sheenacs@163.com)

Coasts and estuaries are key contributors to atmospheric nitrous oxide (N2O) emissions. Here, we used laboratory incubation experiments to investigate temperature (12, 25, and 35 °C) and tidal effects on N2O fluxes in sediments sampled from three contrasting latitudinal subareas along the East China Coast (ECC) (North, Mid, and South). Overall, responses of N2O emissions to increasing temperature varied among the three climatic zones. During non-flood and flooding, mean N2O fluxes in sediments sampled from the North subarea increased exponentially with temperature (49.0 ±40.6 nmol m-2 h-1 at 12 °C to 3160 ±3960 nmol m-2 h-1 at 35 °C, and 741 ±518 nmol m-2 h-1 at 12 °C to 1020 ±1400 nmol m-2 h-1 at 35 °C, respectively). However, mean N2O fluxes in sediments sampled from the South subarea decreased at higher temperatures during flooding (977 ±306 nmol m-2 h-1 at 12 °C to 68.0 ±47.5 nmol m-2 h-1 at 35 °C) and non-flood (233 ±292 nmol m-2 h-1 at 12 °C to 183 ±142 nmol m-2 h-1 at 35 °C). Under ongoing global warming, intertidal areas at temperate may act as potential sources of N2O, whereas the contribution of low latitude coastal sediments to N2O budget may decrease. In addition, there is a combined impact of temperature and tidal fluctuation on N2O emissions that controls N2O production and consumption. Our results improve understanding of the diverse feedbacks of N2O emissions from coastal area to global climate change.

How to cite: Chen, S. and Wang, D.: Effects of Temperature increase on N2O Emissions from Intertidal Area along the East China Coast, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-3701, https://doi.org/10.5194/egusphere-egu21-3701, 2021.

Corresponding presentation materials formerly uploaded have been withdrawn.