EGU21-6553, updated on 04 Mar 2021
EGU General Assembly 2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.

Potential of sociohydrology for studying natural disasters

Franciele Maria Vanelli and Masato Kobiyama
Franciele Maria Vanelli and Masato Kobiyama
  • Federal University of Rio Grande do Sul, Institute of Hydraulic Research, Porto Alegre, Brazil (

Natural disasters refer to disruptions of the society’s functioning as result of negative interactions between natural hazards and social organization. Meanwhile, sociohydrology is dedicated to understanding the coupled human-water systems feedbacks. Both natural disaster studies and sociohydrology focus on understanding bidirectional interactions between environmental and social aspects, which is characterized by a dichotomous thinking pattern. In this context, natural disaster studies and sociohydrology have many parallels. In the present research, we conducted an exploratory research from two central arguments: (i) sociohydrology development can contribute to understanding how to disaster risk reduction by converting negative impacts into a harmonious coexistence between natural and social interactions; and (ii) water is relevant to all types of natural disasters in a direct or an indirect manner and is also fundamental in disaster response. Advances in knowledge about bidirectional interactions between environmental and social aspects overcoming dichotomous thinking pattern can update the sociohydrology development and the concepts commonly applied to natural disaster and risk reduction. We propose that any local community should use the school catchment concept that refers to any experimental catchment which serves for scientific researches and environmental education activities. The partnership between natural and social scientists and society is a challenge. Thus, school catchment construction and use can assist to overcome dichotomous thinking such as natural × social aspects, quantitative × qualitative analyses, systematic × non-systematic data, global × local spatial scales, and structural × non-structural measures. Hence, sociohydrology can support the integrated management of water resources and natural disasters and risks, contributing to achieving the Sendai Framework goals and the Sustainable Development Goals of the United Nations Agenda 2030. On the other hand, natural disaster studies can contribute to the interdisciplinary or transdisciplinary development of sociohydrology. Therefore, we conclude that sociohydrology has the potential, not yet explored, for contributing to natural disaster studies and vice and versa.

How to cite: Vanelli, F. M. and Kobiyama, M.: Potential of sociohydrology for studying natural disasters, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-6553,, 2021.