EGU21-8128
https://doi.org/10.5194/egusphere-egu21-8128
EGU General Assembly 2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.

Time-scale dependent mechanism of atmospheric CO2 concentration drivers of watershed water-energy balance

Jing Zhao
Jing Zhao
  • Xi'an University of Technology, Xi’an, China (zhaojing3942727@126.com)

The elevated atmospheric carbon dioxide concentration (CO2), as a key variable linking human activities and climate change, seriously affects the watershed hydrological processes. However, whether and how atmospheric CO2 influences the watershed water-energy balance dynamics at multiple time scales have not been revealed. Based on long-term hydrometeorological data, the variation of non-stationary parameter n series in the Choudhury's equation in the mainstream of the Wei River Basin (WRB), the Jing River Basin (JRB) and Beiluo River Basin (BLRB), three typical Loess Plateau regions in China, was examined. Subsequently, the Empirical Mode Decomposition method was applied to explore the impact of CO2 on watershed water-energy balance dynamics at multiple time scales. Results indicate that (1) in the context of warming and drying condition, annual n series in the WRB displays a significantly increasing trend, while that in the JRB and BLRB presents non-significantly decreasing trends; (2) the non-stationary n series was divided into 3-, 7-, 18-, exceeding 18-year time scale oscillations and a trend residual. In the WRB and BLRB, the overall variation of n was dominated by the residual, whereas in the JRB it was dominated by the 7-year time scale oscillation; (3) the relationship between COconcentration and n series was significant in the WRB except for 3-year time scale. In the JRB, COconcentration and n series were significantly correlated on the 7- and exceeding 7-year time scales, while in the BLRB, such a significant relationship existed only on the 18- and exceeding 18-year time scales. (4) CO2-driven temperature rise and vegetation greening elevated the aridity index and evaporation ratio, thus impacting watershed water-energy balance dynamics. This study provided a deeper explanation for the possible impact of CO2 concentration on the watershed hydrological processes.

How to cite: Zhao, J.: Time-scale dependent mechanism of atmospheric CO2 concentration drivers of watershed water-energy balance, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-8128, https://doi.org/10.5194/egusphere-egu21-8128, 2021.