Extreme sea levels at the Finnish coast due to large-scale wind storms
- Finnish Meteorological Institute, Finland (jani.sarkka@fmi.fi)
In the Baltic Sea, the short-term sea level variation might be several meters, even if the tides in the Baltic Sea are negligible. The short-term sea level fluctuations are caused by passing wind storms, inducing sea level variation through wind-induced currents, inverse barometric effect and seiches. Due to the shape of the Baltic Sea with several bays, the highest sea levels are found in the ends of bays like the Gulf of Finland and the Bothnian Bay. The sea level extremes caused by the large-scale windstorms depend strongly on the storm tracks. Within the natural climatic variability during the past centuries, there have most likely been higher sea level extremes than the extreme values found in the tide gauge records.
To study this variability of sea levels, induced by varying tracks of the passing windstorms, we construct an ensemble of synthetic low-pressure systems. In this ensemble, the parameters of the low-pressure systems (e.g. point of origin, velocity of the center of the system and depth of the pressure anomaly) are varied. The ensemble of low pressure systems is used as an input to a numerical sea level model based on shallow-water hydrodynamic equations. The sea level model is fast to calculate, enabling a study of a large set of varying storm tracks. As a result we have an ensemble of simulated sea levels. From the simulation results we can determine the low-pressure system that induces the highest sea level on a given location on the coast. We concentrate our studies on the Finnish coast, but the method can be applied to the entire Baltic coast.
How to cite: Särkkä, J., Räihä, J., Rantanen, M., and Jylhä, K.: Extreme sea levels at the Finnish coast due to large-scale wind storms, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-8839, https://doi.org/10.5194/egusphere-egu21-8839, 2021.
Corresponding displays formerly uploaded have been withdrawn.