Numerical and experimental study of the vertical distribution of velocity and hydraulic gradient in the capillary fringe
- Applied Geology (Hydrogeology), Ruhr University Bochum, Bochum, Germany (al.mahdavi@gmail.com)
Capillary fringe plays an important role in the fate and transport of infiltrated solutes from agricultural lands. In this study, flow patterns and the vertical distribution of the velocity and hydraulic gradient inside the capillary fringe were investigated using FEFLOW calibrated by experimental data. An experimental box along with a real sample of capillary fringe from the study area (Sand and clay pit Brüggen, Germany) was used for the experiments. The dimension of the filled part of the box was 0.75 m long, 0.55 m high, and 0.150 m wide. To maintain a constant hydraulic gradient throughout the experiments the upstream and downstream groundwater levels were fixed to 7 cm and 3 cm, respectively. The horizontal velocity at different points inside the capillary fringe and the vadose zone was measured by injecting the fluorescent dye tracer (Uranin). At the end of the experiments, the soil samples are collected from different parts of the box for water content measurement. The results indicate that FEFLOW successfully estimates water content, overall flow pattern, and more importantly horizontal movement inside the capillary fringe. The streamlines are parallel to the groundwater table in the middle part. Based on both experimental and numerical results, while there is a downward movement near the outflow, an upward movement was seen near the inflow. In previous studies, the velocity profile inside the capillary fringe was estimated using Darcy’s law, unsaturated hydraulic conductivity, and constant hydraulic gradient. The detailed comparison of measured water content and velocity with numerical modeling results showed that the constant hydraulic gradient assumption above the water table in previous studies is not valid. The vertical hydraulic gradient profile calculated by FEFLOW showed that the hydraulic gradient at the middle part of the box changes from 0.042 to 0.03. Moreover, the shape of the vertical hydraulic gradient profile is a function of the location in the box and soil type.
Keywords: Solute transport, Unsaturated zone, Streamline, Pore velocity, Hydraulic conductivity, FEFLOW
How to cite: Mahdavi Mazdeh, A. and Wohnlich, S.: Numerical and experimental study of the vertical distribution of velocity and hydraulic gradient in the capillary fringe, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-9143, https://doi.org/10.5194/egusphere-egu21-9143, 2021.
Corresponding displays formerly uploaded have been withdrawn.