EGU General Assembly 2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.

Zoogeomorphosite: A concept for, and example of, linking geoheritage and biodiversity heritage

François Bétard
François Bétard
  • Université de Paris, France (

Zoogeomorphosites can be defined as geomorphological sites of special interest for animal biodiversity and conservation. They appear as ideal places for linking geoheritage and biodiversity heritage because of the reciprocal effects and interactions between landforms and animals. On one hand, geomorphodiversity exerts an influence on animal biodiversity at alpha, beta and gamma levels, and many landforms constitute valuable habitats for a wide range of animal species. On the other hand, animals can have direct and indirect geomorphic effects by creating specific landforms (e.g., mounds) and by influencing geomorphic processes (e.g, runoff), respectively.

The aim of this presentation is (1) to illustrate a worldwide range of sites fitting the conceptual definition of a zoogeomorphosite, with a proposed typology, and (2) to present an example of zoogeomorphological survey conducted on a site in Northwest France (Bois-des-Jarries, Vendée), where geoheritage meets with biodiversity heritage. The selected study site is a granitic geomorphosite composed of two hills with small tors and boulders outcropping at 230-260 m a.s.l., and franging a large fluvial paleo-valley of Ypresian age. The land cover is a mosaic of mixed forests and dry heathlands recognized for their high ecological interest, with many valuable species of vascular plants, birds and invertebrates. A major zoogeomorphic interest of the site is that it hosts an important population of mound-building red wood ants (Formica rufa), a regionally rare and vulnerable species responsible for an impressive collection of biogenic microlandforms (ant mounds) on a small surface (62 ha). A zoogeomorphogical survey carried out in summer 2020 on these ant mounds involved a two-stage methodology: (1) linear surveys along forest paths, in order to calculate mound densities and to proceed with a general inventory of ant mounds; (2) morphometric measurements of mounds using strip transects in 13 representative habitat types, in order to calculate mound volumes and to evaluate their evolution on a 5-years period.

119 mounds of Formica rufa have been inventoried in summer 2020 along the forest paths, indicating a density of 2-4 mounds ha–1. First results of the morphometric measurements indicate that the highest biovolumes are found in pine or mixed forest habitats, and that the geomorphology of the granitic hills (slope, aspect, height above drainage, etc.) is of major influence on their distribution and shape. In turn, ant mounds create environmental heterogeneity, or patch-scale geodiversity, highly favourable to biodiversity, notably because they offer microhabitats for various myrmecophilous insects. Finally, ant mounds can be viewed as a remarkable example of biogeomorphological heritage, hybrid and evolutionary in nature, but highly sensitive to environmental and human-induced changes (e.g., forest clear cuts, tourism pressure). Because ant mounds are an integral component of natural heritage and a key provider of ecosystem services, their inventory and protection as zoogeomorphosites – just like that of termite mounds – are of prime relevance in the wider scope of integrating geodiversity and biodiversity in nature conservation policies and strategies.

How to cite: Bétard, F.: Zoogeomorphosite: A concept for, and example of, linking geoheritage and biodiversity heritage, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-92,, 2020.


Display file