Co-organized by CL3.2
Convener: Ilona M. Otto | Co-conveners: Marina Fischer-Kowalski, Helmut Haberl, Wolfgang Lucht, Dominik WiedenhoferECSECS

The pressure of human activities on the Earth System has reached a scale where abrupt global environmental changes can no longer be excluded and gradual changes are accelerating at alarming rates. Simply continuing established political efforts to “decouple” GDP from resource use and GHG emissions will not suffice to achieve the absolute reductions required to avoid catastrophic climate change and reduce rising pressures on ecosystems. Hence, a socioecological transformation of resource use patterns is required that will imply significant non-linear deviations from past trajectories.
The question then arises, to what extent and how societies actually have agency to actively shape, accelerate and steer such a required transformation? Human agency refers to the ability to shape one’s life, or the collective ability to change the course of social action. Individual agency is reflected in individual choices and the ability to influence one’s life conditions and chances. Collective agency refers to situations in which individuals pool their knowledge, skills, and resources, and act in concert to shape their future.
Complex systems, such as our planet and human societies, cannot be fully controlled and their behaviour cannot be predicted. Nevertheless, some authors argue it possible to imperfectly navigate such systems. The questions that we are going to discuss in the session include:
i. How to navigate the humanity in the Anthropocene?
ii. What are the relevant dimensions of human agency to study human-environment system interactions?
iii. Which concepts and research methods are relevant for the research on human agency?
iv. How to operationalize human agency in global human-environmental system modelling efforts?
We are in particular interested in new approaches that would go beyond the rational choice and equilibrium paradigms. Such approaches should be able to explain and demonstrate system evolution pathways, system transitions, tipping points, and tipping interventions. They should be able to include human agents who operate under the conditions of resource scarcity and conflicting interests, and take decisions in the presence of high risk and uncertainty.