ITS2.11/AS4.12

Pan-Eurasian EXperiment (PEEX) – Observation, Modelling and Assessment in the Arctic-Boreal Domain

This session is linked to the Pan-Eurasian EXperiment (PEEX; www.atm.helsinki.fi/peex), a multi-disciplinary, -scale and -component climate change, air quality, environment and research infrastructure and capacity building programme. It is aimed at resolving major uncertainties in Earth system science and global sustainability issues concerning the Arctic, Northern Eurasia and China regions. This session aims to bring together researchers interested in (i) understanding environmental changes effecting in pristine and industrialized Pan-Eurasian environments (system understanding); (ii) determining relevant environmental, climatic, and other processes in Arctic-boreal regions (process understanding); (iii) the further development of the long-term, continuous and comprehensive ground-based, air/seaborne research infrastructures together with satellite data (observation component); (iv) to develop new datasets and archives of the continuous, comprehensive data flows in a joint manner (data component); (v) to implement validated and harmonized data products in models of appropriate spatio-temporal scales and topical focus (modeling component); (vi) to evaluate impact on society though assessment, scenarios, services, innovations and new technologies (society component).
List of topics:
• Ground-based and satellite observations and datasets for atmospheric composition in Northern Eurasia and China
• Impacts on environment, ecosystems, human health due to atmospheric transport, dispersion, deposition and chemical transformations of air pollutants in Arctic-boreal regions
• New approaches and methods on measurements and modelling in Arctic conditions;
• Improvements in natural and anthropogenic emission inventories for Arctic-boreal regions
• Physical, chemical and biological processes in a northern context
• Aerosol formation-growth, aerosol-cloud-climate interactions, radiative forcing, feedbacks in Arctic, Siberia, China;
• Short lived pollutants and climate forcers, permafrost, forest fires effects
• Carbon dioxide and methane, ecosystem carbon cycle
• Socio-economical changes in Northern Eurasia and China regions.
PEEX session is co-organized with the Digital Belt and Road Program (DBAR), abstracts welcome on topics:
• Big Earth Data approaches on facilitating synergy between DBAR activities & PEEX multi-disciplinary regime
• Understanding and remote connection of last decades changes of environment over High Asia and Arctic regions, both land and ocean.

Public information:
This session is linked to the Pan-Eurasian EXperiment (PEEX; www.atm.helsinki.fi/peex), a multi-disciplinary, -scale and -component climate change, air quality, environment and research infrastructure and capacity building program. PEEX is aimed at resolving major uncertainties in Earth system science and global sustainability issues concerning the Arctic, Northern Eurasia and China regions. The PEEX - EGU - 2021 session(s) are dedicated in honor of the memory of Prof. Sergej Zilitinkevich.
Co-organized by BG3/CL2/CR7/GI4
Convener: Markku Kulmala | Co-conveners: Alexander Baklanov, Hanna Lappalainen, Sergej Zilitinkevich (deceased)
vPICO presentations
| Thu, 29 Apr, 09:00–12:30 (CEST)
Public information:
This session is linked to the Pan-Eurasian EXperiment (PEEX; www.atm.helsinki.fi/peex), a multi-disciplinary, -scale and -component climate change, air quality, environment and research infrastructure and capacity building program. PEEX is aimed at resolving major uncertainties in Earth system science and global sustainability issues concerning the Arctic, Northern Eurasia and China regions. The PEEX - EGU - 2021 session(s) are dedicated in honor of the memory of Prof. Sergej Zilitinkevich.

vPICO presentations: Thu, 29 Apr

PEEX Session Part I
09:00–09:05
09:05–09:15
|
EGU21-10618
|
solicited
|
Highlight
Hanna Lappalainen, Tuukka Petaja, Timo Vihma, Jouni Raisanen, Aleksander Baklanov, Sergey Chalov, Igor Ezau, Ekaterina Ezhova, Matti Lepparanta, Dimitry Pozdnyakov, Jukka Pumpanen, Yubao Qiu, Aijun Ding, Huadong Guo, Valery Bondur, Nikolay Kasimov, Sergey Zilitinkevich, Veli-Matti Kerminen, and Markku Kulmala

Pan-Eurasian Experiment (PEEX) Programme (www.atm.helsinki.fi/peex) is an asset for PEEX to have high international visibility, to attract further research collaboration and to upscale its scientific impact in various arenas. The PEEX research focus is on the northern high latitudes environments and on the transport and transformation of air pollution in China (Kulmala et al. 2015, Lappalainen et al. 2014; 2015; 2016; 2018, Vihma et al. 2019, Alekseychik et al. 2019, Kasimov et al. 2018). In 2019 PEEX started comprehensive analysis on the first results over last five years attained from the PEEX geographical domain.  The aim of the analysis is to study the state-of-the-art research outcome versus the PEEX large-scale research questions addressed by the Science Plan (Lappalainen et al. 2015). Lappalainen et al. 2021 (submitted) introduces recent observations and results from the Russian Arctic, Northern Eurasian boreal forests (Siberia) and peatlands and on the mega cities in China. We frame our analysis against research themes introduced in the the PEEX Science Plan (2015). Although the scientific knowledge in these regions has increased, there are still gaps in our understanding of large-scale climate-Earth surface interactions and feedbacks. This arises from limitations in research infrastructures and integrative data analyses, hindering a comprehensive system analysis. The fast-changing environment and ecosystem changes driven by climate change, socio-economic activities like the China Silk Road Initiative, and the global trends like urbanization further complicate such analyses. We recognize new topics with an increasing importance in the near future, such as enhancing biological sequestration capacity of greenhouse gases into forests and soils to mitigate the climate change and the socio-economic development to tackle air quality issues.

 

 

How to cite: Lappalainen, H., Petaja, T., Vihma, T., Raisanen, J., Baklanov, A., Chalov, S., Ezau, I., Ezhova, E., Lepparanta, M., Pozdnyakov, D., Pumpanen, J., Qiu, Y., Ding, A., Guo, H., Bondur, V., Kasimov, N., Zilitinkevich, S., Kerminen, V.-M., and Kulmala, M.: Overview: Recent advances on the understanding of the Northern Eurasian environments and of the urban air quality in China – Pan-Eurasian Experiment (PEEX) program perspective, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-10618, https://doi.org/10.5194/egusphere-egu21-10618, 2021.

09:15–09:17
|
EGU21-7901
Eugene Mikhailov, Mira Pöhlker, Kathrin Reinmuth-Selzle, Sergey Vlasenko, Christopher Pöhlker, Olga Ivanova, and Ulrich Pöschl

Pollen grains emitted from vegetation can release subpollen particles (SPP) that contribute to the fine fraction of atmospheric aerosols and may act as cloud condensation nuclei (CCN), ice nuclei (IN), or aeroallergens. Here, we investigate and characterize the hygroscopic growth and CCN activation of birch, pine, and rapeseed SPP. A high humidity tandem differential mobility analyzer (HHTDMA) was used to measure particle restructuring and water uptake over a wide range of relative humidity (RH) from 2 % to 99.5 %, and a continuous flow CCN counter was used for size-resolved measurements of CCN activation at supersaturations (S) in the range of 0.2 % to 1.2 %. For both subsaturated and supersaturated conditions, effective hygroscopicity parameters к , were obtained by Köhler model calculations. Gravimetric and chemical analyses, electron microscopy, and dynamic light scattering measurements were performed to characterize further properties of SPP from aqueous pollen extracts such as chemical composition (starch, proteins, DNA, and inorganic ions) and the hydrodynamic size distribution of water-insoluble material. All investigated SPP samples exhibited a sharp increase of water uptake and k above ~95 % RH, suggesting a liquid-liquid phase separation (LLPS). The HHTDMA measurements at RH> 95% enable closure between the CCN activation at water vapor supersaturation and hygroscopic growth at subsaturated conditions, which is often not achieved when HTDMA measurements are performed at lower RH where the water uptake and effective hygroscopicity may be limited by the effects of LLPS. Such effects may be important not only for closure between hygroscopic growth and CCN activation but also for the chemical reactivity, allergenic potential, and related health effects of SPP.

This research has been supported by the Russian Science Foundation (grant no. 18-10 17-00076) and Max Planck Society.

How to cite: Mikhailov, E., Pöhlker, M., Reinmuth-Selzle, K., Vlasenko, S., Pöhlker, C., Ivanova, O., and Pöschl, U.: Water uptake of subpollen aerosol particles: hygroscopic growth, CCN activation, and liquid-liquid phase separation, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-7901, https://doi.org/10.5194/egusphere-egu21-7901, 2021.

09:17–09:19
|
EGU21-6302
Olga Popovicheva, Vasilii Kobelev, Marina Chichaeva, Nikolai Kasimov, and Antony Hansen

Black carbon is a short - living climate forcer, it plays a significant role especially in the Arctic environment due to heating the atmosphere and changing the radiation balance while depositing on snow and ice. Analysis of black carbon (BC) in the Arctic atmosphere shows a contribution of anthropogenic combustion of fossil fuels and natural wildfires to the Arctic atmosphere chemistry as well as of the main characteristics of Arctic aerosol pollution. Presently, assessments of the environment and climate change in the Siberian Arctic are strongly complicated by an existing lack of knowledge about emission sources, quantity, and composition of the aerosol pollution defining the impacts on an Arctic ecosystem.

Research aerosol station is firstly installed on island Bely located in Kara sea, Siberian Arctic. It takes place on the pathway of air mass from the Northern Siberia region of high anthropogenic and gas flaring activity to the Arctic. Presently, assessments of the environment and climate change in this region are strongly complicated by an existing lack of knowledge about emission sources, quantity and composition of the aerosol pollution defining the impacts on an Arctic ecosystem. Aethalometer and aerosol sampling system is continuously operated on the aerosol station in order to analyze black carbon and chemical characteristics including ionic and elemental composition. Annual BC trend obtained from august 2019 to September 2020 shows the typical Arctic aerosol tendency of a seasonal variability, disturbed by episodes of large-scale emission transportation.

Unprecedented high BC is observed in September 2020 at the research aerosol station on the island Bely. The BC concentrations early in September were exceeded 20 times the arctic background. They are found to be even higher than the highest arctic haze concentrations observed in December 2019.   Monthly averaged black carbon concentration in September 2020 exceeded 3 times that one in previous summer months. Such strong event is a result of large-scale air mass transportation from Eurasian continent in the period of strong wildfires in western Siberia, namely in Krasnoyarsk Kray and Yakutia, where around one million hectares of forest were burned out in August 2020. 

Basic researches of aerosol characteristics as a tracer of anthropogenic emissions are supported by Russian Fond for Basic Research, project №18-60084.

.

How to cite: Popovicheva, O., Kobelev, V., Chichaeva, M., Kasimov, N., and Hansen, A.: Сlimate-active aerosol components in the Siberian Arctic, by data from new-developed research aerosol station on island Bely , EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-6302, https://doi.org/10.5194/egusphere-egu21-6302, 2021.

09:19–09:21
|
EGU21-6909
Mikhail Yu. Arshinov, Boris Belan, Denis Davydov, Artem Kozlov, and Alexandr Fofonov

The Arctic is warming much faster than other regions of the globe. In 2020, temperature anomalies in the Russian Arctic reached unprecedented high levels. The atmospheric composition in this key region still remains insufficiently studied that makes difficult predicting future climate change.

In September 2020, an extensive aircraft campaign was conducted to document the tropospheric composition over the Russian Arctic. The Optik Tu-134 research aircraft was equipped with instruments to carry out in-situ measurements of trace gases and aerosols, as well as with a lidar for profiling of aerosol backscatter. The aircraft flew over a vast area from Arkhangelsk to Anadyr. Six measurement flights with changing altitudes from 0.2 to 9.0 m were conducted over the waters of the Barents, Kara, Laptev, East Siberian, Chukchi, and Bering Seas. The weather was unusually warm for this period of the year, surface air temperatures were above 0°C through the campaign.

Here, we present the results of in-situ measurements of the vertical distribution of aerosol number concentrations in a wide range of sizes. A modified diffusional particle sizer (DPS) consisted of the Novosibirsk-type eight-stage screen diffusion battery connected to the TSI condensation particle counter Model 3756 was used to determine the number size distribution of particles between 0.003 mm and 0.2 mm (20 size bins). Distribution of particles in the size range from 0.25 µm to 32 µm (31 size bins) was measured by means of the Grimm aerosol spectrometer Model 1.109.

The flights over Barents and Kara Seas were predominantly performed under clear sky or partly cloudy weather conditions. Number size distributions were wide representing particles of almost all aerosol fractions. When flying in the upper troposphere with a constant altitude over these seas, some cases of enhanced concentrations of nucleation and Aitken mode particles comparable to ones in the lower troposphere were recorded, suggesting in situ new particle formation was likely to be taking place via gas-to-particle conversion aloft.

East of the Kara Sea, flights were conducted under mostly cloudy conditions resulting in a lower median aerosol number concentration and narrower size distributions.

This work was supported by the Russian Foundation for Basic Research (Grant No. 19-05-50024).

How to cite: Arshinov, M. Yu., Belan, B., Davydov, D., Kozlov, A., and Fofonov, A.: Vertical distribution of aerosol particles over the Russian Arctic derived from in-situ aircraft measurements: the September 2020 campaign, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-6909, https://doi.org/10.5194/egusphere-egu21-6909, 2021.

09:21–09:23
|
EGU21-6892
Boris D. Belan, Pavel Antokhin, Olga Antokhina, Victoriya Arshinova, Mikhail Arshinov, Sergey Belan, Denis Davydov, Georgii Ivlev, Artem Kozlov, Alexandr Kozlov, Olesya Okhlopkova, Tatyana Rasskazchikova, Denis Savkin, Alexandr Safatov, Denis Simonenkov, Gennadii Tolmachev, and Alexandr Fofonov

In 2020, a unique experiment, which had ever been implemented either in the former USSR or in modern-day Russia, was carried out in the Russian Arctic by means of the Optik Tu-134 aircraft laboratory operated by IAO SB RAS. The airborne measurement campaign was conducted on September 4-17 over all seas and coastal regions of the Russian sector of the Arctic, including northern part of the Bering Sea.

During the flights, in situ measurements of CO, CO2, CH4, NO, NO2, SO2, O3, aerosols, and black carbon (BC) were performed. Air samples were taken to determine organic and inorganic compounds and biological material in aerosol particles. A remote sensing of the water turbidity in the upper sea layers was conducted by means of the LOZA-2 lidar that allowed a concentration of plankton to be derived there. Spectral characteristics of the water and underlying coastal surfaces were measured using a spectroradiometer.

The primary analysis of the obtained data showed that concentrations of CO, NO, NO2, SO2, O3, aerosols, and BC during the experiment were low that is typical for background regions. CO2 mixing ratios in the lowest part of the troposphere above seas were lower than aloft. As compared with coastal areas, concentration of methane over all the seas of the Arctic sector and the Bering Sea was higher.

We would like to acknowledge our colleagues from the following organizations for their assistance in organizing and conducting this campaign, and in particular, Laboratoire des sciences du climat et de l'environnement and Laboratoire atmosphères, milieux, observations spatiales (France); Finnish Meteorological Institute and Institute for Atmospheric and Earth System Research, University of Helsinki (Finland); Center for Global Environmental Research at the National Institute for Environmental Studies (Japan); the National Oceanic and Atmospheric Administration, US Department of Commerce (USA); Max-Planck-Institute for Biochemistry (Germany); and University of Reading (UK).

How to cite: Belan, B. D., Antokhin, P., Antokhina, O., Arshinova, V., Arshinov, M., Belan, S., Davydov, D., Ivlev, G., Kozlov, A., Kozlov, A., Okhlopkova, O., Rasskazchikova, T., Savkin, D., Safatov, A., Simonenkov, D., Tolmachev, G., and Fofonov, A.: Vertical distribution of trace gases and aerosols over the Russian Arctic in September 2020, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-6892, https://doi.org/10.5194/egusphere-egu21-6892, 2021.

09:23–09:25
|
EGU21-16490
Tomi Karppinen, Anu-Maija Sundström, Hannakaisa Lindqvist, and Johanna Tamminen

Climate change is proceeding fastest in the Arctic region. While human-induced emissions of long-lived greenhouse gases are the main driving factor of global warming, short-lived climate forcers or pollutants emitted from the forest fires are also playing an important role, especially in the Arctic. Forest fire emissions also affect local air quality and photochemical processes in the atmosphere. For example, CO contributes to the formation of tropospheric ozone and affects the abundance of greenhouse gases such as methane and CO2.

During past years Arctic summers have been warmer and drier elevating the risk for extensive forest fire episodes. Satellite observations show, that during the past three summers (2018-2020) fire detections in Arctic, especially in Arctic Siberia have increased considerably, affecting also local emissions of CO. This work focuses on studying CO concentration and its variation at high latitudes and in the Arctic using satellite and ground-based observations. Satellite observations of CO from TROPOMI are analyzed for the 2018-2020 (NH) summer months. To assess the satellite retrieved columns the satellite measurements are compared to ground-based remote sensing measurements at Sodankylä. Also, ground-based in-situ measurements are used to see how the total column changes mirror the ground level concentrations. The fire characteristics are analyzed using observations from MODIS instruments onboard Aqua and Terra. Fire effects on seasonal cycle and interannual variability of CO concentrations at Arctic high latitudes are analyzed.

How to cite: Karppinen, T., Sundström, A.-M., Lindqvist, H., and Tamminen, J.: Satellite-based analysis of CO and Fires in the Arctic, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-16490, https://doi.org/10.5194/egusphere-egu21-16490, 2021.

09:25–09:27
|
EGU21-13124
Larisa Sogacheva, Anu-Maija Sundström, Timo H. Virtanen, Antti Arola, Tuukka Petäjä, Hanna K. Lappalainen, and Markku Kulmala

The Pan-Eurasian Experiment Program (PEEX) is an interdisciplinary scientific program bringing together ground-based in situ and remote sensing observations, satellite measurements and modeling tools aiming to improve the understanding of land-water-atmosphere interactions, feedback mechanisms and their effects on the ecosystem, climate and society in northern Eurasia, Russia and China. In a view of the large area covering thousands of kilometres, large gaps will remain where no or little ground-based observational information will be available. The gap can partly be filled by satellite remote sensing of relevant parameters as regards atmospheric composition.

Biomass burning is a violent source of atmospheric pollutants. Fires and corresponding emissions to the atmosphere dramatically change the atmospheric composition in case of long-lasting fire events, which might cover extended areas. In the burned areas, CO2 exchange, as well as emissions of different compounds are getting to higher levels, which might contribute to climate change by changing the radiative budget through the aerosol-cloud interaction and cloud formation. In the boreal forest, after CO2, CO and CH4, the largest emission factors for individual species were formaldehyde, followed by methanol and NO2 (Simpson et al., ACP, 2011). The emitted long-life components, e.g., black carbon, might further be transported to the distant areas and measured at the surface far from the burned areas.

In the boreal forest region, fires are very common, very large and produce a lot of smoke. Boreal areas  have been burning regularly for thousands of years and is adapted to fires, which happen most often between May and October. In boreal ecosystems, future increases in air temperature may lengthen the fire season and increase the probability of fires, leading some to hypothesize a positive feedback between warming, fire activity, carbon loss, and future climate change (Kasischke et al., 2000). 

 During the last few decades, several burning episodes have been observed over PEEX area by satellites (as fire counts), specifically over Siberia and central Russia. The following information available from satellites will be utilized to reveal a connection between Fire activity and atmospheric composition for the period 2002-2020 over the PEEX area:

  • - Fire count, FRP and burned areas from MODIS
  • - Absorbing Aerosol Index (AAI), multi-instrument (GOME-2, OMI, TOMS) product
  • - CO from MOPPIT
  • - HCHO and NO2 from OMI

Monthly temperature and humidity fields from ERA5 re-analysis will be also utilized to reveal if a connection exist between climate variables and occurrence and intensity of the forest fires.

Kasischke, B. J. Stocks: Fire, Climate Change, and Carbon Cycling in the Boreal Forest. M. M. Cadwellet al.,Eds., Ecological Studies (Springer, New York, 2000)

Simpson, I. J., Akagi, S. K., Barletta, B., Blake, N. J., Choi, Y., Diskin, G. S., Fried, A., Fuelberg, H. E., Meinardi, S., Rowland, F. S., Vay, S. A., Weinheimer, A. J., Wennberg, P. O., Wiebring, P., Wisthaler, A., Yang, M., Yokelson, R. J., and Blake, D. R.: Boreal forest fire emissions in fresh Canadian smoke plumes: C1-C10 volatile organic compounds (VOCs), CO2, CO, NO2, NO, HCN and CH3CN, Atmos. Chem. Phys., 11, 6445–6463, https://doi.org/10.5194/acp-11-6445-2011, 2011.

 

How to cite: Sogacheva, L., Sundström, A.-M., Virtanen, T. H., Arola, A., Petäjä, T., Lappalainen, H. K., and Kulmala, M.: Fire activity and its influence on Aerosol Optical Depth and Green-House Gases over PEEX area for the last two decades, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-13124, https://doi.org/10.5194/egusphere-egu21-13124, 2021.

09:27–09:29
|
EGU21-1477
Yury Timofeyev, Georgy Nerobelov, Anatolii Poberovskii, and Nikolai Filippov

Ground-based spectroscopic international measurement systems TCCON and NDACC are important for regular obtaining the data on atmospheric gas composition. A great part of such data is derived as the total content of the gases and as an averaged mixing ratio for the dry atmosphere as, for example, XCO2. On the other hand, the measurements of solar IR radiation spectra with high spectral resolution carry within them some amount of information on the vertical structure of the content of some gases. The method of estimation of CO2 content in the troposphere and stratosphere was described in a study [Timofeyev Yu.M., Nerobelov G.M., Poberovskii A.V., Filippov N.N. Evaluation of CO2 content in troposphere and stratosphere by ground-based IR method.  “Izvestiya, Atmospheric and Oceanic Physics”. 2021, Nо.2]. In our work we present the analysis of the inaccuracies of the suggested approach using different spectral windows. Also, we demonstrate the comparison between CO2 tropospheric and stratospheric content obtained by the suggested approach using ground-based measurements of IR spectra with high resolution in Peterhof (2009-2019), by Copernicus Atmosphere Monitoring Service (CAMS) and by satellite measurements of XCO2 in the troposphere and stratosphere using ACE instrument.

How to cite: Timofeyev, Y., Nerobelov, G., Poberovskii, A., and Filippov, N.: Estimation of the tropospheric and stratospheric CO2 content by ground-based IR technique, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-1477, https://doi.org/10.5194/egusphere-egu21-1477, 2021.

09:29–09:31
|
EGU21-4815
|
ECS
Abiotic drivers of CO2 fluxes in the transition from the winter-to-spring in coniferous forest and bog in central Siberia
(withdrawn)
Sung-Bin Park
09:31–09:33
|
EGU21-9773
Alexey Panov, Anatoly Prokushkin, Jošt Lavrič, Karl Kübler, Mikhail Korets, Anastasiya Urban, Nikita Sidenko, Galina Zrazhevskaya, Mikhail Bondar, and Martin Heimann

Measurements of the atmospheric sources and sinks of carbon dioxide (CO2) and methane (CH4) in the pan-Arctic domain are extremely sparse that limits our knowledge of carbon cycling over this dramatically sensitive environment and making predictions about a fate of carbon conserved in currently frozen ground. Especially critical are the gaps in the arctic latitudes of Siberia, covered by the vast permafrost underlain tundra, where only few continuous atmospheric observation stations are currently operational.

We present the first two years of accurate continuous observations of atmospheric CO2 and CH4 dry mole fractions at the new atmospheric carbon observation station located near the Dikson settlement (73.33° N, 80.34° E) on the seashore of the western part of the Taimyr Peninsula in Siberia. Data quality control of trace gas measurements is achieved by regular calibrations against WMO-traceable reference gases from pressurized dry air tanks filled at the Max Planck Institute for Biogeochemistry (Jena, Germany). Associated meteorological variables permit evaluation of the climate variability of the local environment and provide a background for screening and interpreting the greenhouse gases (GHG) data records. Here we summarize the scientific rationale of the new site, give technical details of the instrumental setup, analyse the local environments and present CO2 and CH4 fluctuations in the arctic atmosphere. Along with the temporal variability of GHG’s, we provide an overview of the angular distribution of detected GHG signals in the region and their input to the atmospheric fluctuations on the measurement site. Observation records deal with the daytime mixed layer and may be considered as representative throughout the vast area (~500–1000 km), and cover the period from September 2018 to September 2020.

The reported study was funded by Russian Foundation for Basic Research, Krasnoyarsk Territory and Krasnoyarsk Regional Fund of Science, project number 20-45-242908, RFBR project 18-05-60203 and by the Max Planck Society (Germany)

How to cite: Panov, A., Prokushkin, A., Lavrič, J., Kübler, K., Korets, M., Urban, A., Sidenko, N., Zrazhevskaya, G., Bondar, M., and Heimann, M.: Accurate continuous observations of carbon dioxide and methane dry mole fractions in the arctic atmosphere near the Dikson settlement, Siberia, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-9773, https://doi.org/10.5194/egusphere-egu21-9773, 2021.

09:33–09:35
|
EGU21-329
|
ECS
Mykhailo Savenets and Larysa Pysarenko

Wildfires remain among the most challenging problems in Ukraine. Each year numerous cases of open burning contribute to huge carbon emissions and turn into forest fires. Using the Global Fire Emissions Database (GFED4), there were studied an average burned fraction in Ukraine, which equals of about 0.2-0.3. 90% of wildfires appeared on agricultural lands. The total contribution to carbon emissions is 0.2-1.0 g·m2·month-1 with the increasing trend of about 1-2 g·m2·month-1 per decade. There are three periods with the highest carbon emissions: April, July-August and September-October. While a summer maximum is corresponding to unfavorable temperature and moisture regimes, the main reason of wildfires in spring and autumn is the agricultural open burning. Based on the Sentinel-5P data, it was found that wildfires significantly change the seasonality of carbon monoxide (CO) variations. If maximal CO content is mainly observed in winter at the end of the heating season, in Ukraine the highest CO values continue to exist in April until the open burning stops and the resulting forest fires are extinguished. Wildfires caused the CO content increase to 4.0–5.0 mol·m-2 which is comparable to the most polluted Ukrainian industrial cities. As a result, air quality deterioration observed at the distances more than 200 km from the burned areas. Using the Enviro-HIRLAM simulations, there were estimated black carbon (BC) distribution, which showed elevated content within the lowest 3-km layer. BC content reaches 600 ppbm near the active fires, 150 ppbm at the distance up to 100 km and 30 ppbm at the distance of about 200-500 km.

How to cite: Savenets, M. and Pysarenko, L.: The impact of wildfires in Ukraine on carbon flux and air quality changes by carbon-containing compounds, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-329, https://doi.org/10.5194/egusphere-egu21-329, 2021.

09:35–09:37
|
EGU21-681
|
Highlight
Igor Esau and the SERUS team

Across the Arctic, human settlements are challenged by rapid climate change and a broad range of environmental transformations. Some of them, such as Barrow (Utqiagvik, Alaska), must relocate; others, such as Norilsk (Russia), must restructure and rebuild. This presentation reports on local climate anomalies in 118 circum-Arctic cities and towns. For several key towns, a nexus review of the environmental consequences of the local warm anomalies is detailed. Longyearbyen (Svalbard), Apatity and Nadym (Russia) are in focus. For instance, Longyearbyen – the European “gate” to the Arctic – experiences one of the stongest climate change. The surface air temperature here has increased by almost 10oC over the last 100 years with more than 100 consecutive months being warmer than normal. Snowfall increases threatening with hazardous slab snow avalanches. The last extreme heat wave (July, 2020) showed temperatures up to +21oC and massive flooding in the coal mine.  This study synthesizes observational evidence of the climate change in the town from a local perspective. We relate meteorological conditions with sustainability issues. The study looks at local climate diversity and its role for society and economy of the settlement.

How to cite: Esau, I. and the SERUS team: A local climate perspective from Arctic towns, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-681, https://doi.org/10.5194/egusphere-egu21-681, 2021.

09:37–09:39
|
EGU21-5168
|
Highlight
Nikolay Kasimov, Olga Popovicheva, Dmitry Vlasov, Marina Chichaeva, and Anastasia Larionova

Reduction of urban emissions following the response to COVID-19 pandemic has provided the unique possibility for assessment of the aerosol pollution in the metropolitan area with the highest population density in Russia. According to observation data obtained from the aerosol research station of Meteorological Observatory of Lomonosov Moscow State University, the strict control measures and social lockdowns initiated in spring 2020 in Moscow megacity have had a notable decreasing of PM2.5, black carbon (BC), and PM10-bound potentially toxic elements (PTEs) concentrations. The average concentration of PM2.5 and BC has decreased by 42% and 75%, respectively, in comparison to the following period of economical restoration in summer 2020. A city traffic decrease led to a gentle dynamics of a BC diurnal trend due to a reduced energy load in the morning hours. Changes in the enterprises operating regime affected the redistribution of emissions intensities from working days to weekends. During the period of recovery of economic activity in the summer of 2020, the emission intensity has increased and the direction of BC sources has changed. Furthermore, these factors resulted in substantial increase in the pollution levels for the most of PTEs during the period of economical restoration. For instance, Ba, Sn, K, Cu, Bi, B, Mo, As, Sb, and Pb concentrations emitted from vehicles and industrial sources were increased by 42–167%. Levels of PTEs originated from construction and demolition processes (Sr, Mg, and Ca by 175%, 21%, and 19%, respectively), road dust and soil particles resuspension (Zr, P, Mn, and Fe, by 76%, 51%, 49% and 46%, respectively) also experienced the significant growth. Real-time measurements of short-term changes in the atmosphere aerosol pollution with a rapid extreme fall and subsequent restoration of economic activity allows a better understanding of the processes taking place in the system of economy-society-environment of large cities.

How to cite: Kasimov, N., Popovicheva, O., Vlasov, D., Chichaeva, M., and Larionova, A.: Spring-summer 2020 aerosol pollution in Moscow metropolitan area, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-5168, https://doi.org/10.5194/egusphere-egu21-5168, 2021.

09:39–09:41
|
EGU21-4160
Nataly Chubarova, Elizaveta Androsova, Alexander Kirsanov, Alexei Poliukhov, Ekaterina Zhdanova, Marina Shatunova, Julia Khlestova, Bernhard Vogel, Heike Vogel, and Gdaliy Rivin

Atmospheric aerosol has a noticeable effect on the microphysical and optical properties of the atmosphere, solar radiation, temperature and humidity conditions, thereby determining the quality of the forecast of important meteorological elements and affecting the regional climate and the dynamics of geochemical processes. Using the results of the spring AeroRadCity experiment at the MSU Meteorological Observatory in 2018-2019, and numerical calculations on the base of modern COSMO and COSMO-ART mesoscale mo