EGU General Assembly 2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.

A test of the Regolith Hypothesis with fully coupled glacial sediment and ice sheet modelling

Matthew Drew1 and Lev Tarasov2
Matthew Drew and Lev Tarasov
  • 1Physics & Physical Oceanography, Memorial University of Newfoundland, St John's, Canada (
  • 2Physics & Physical Oceanography, Memorial University of Newfoundland, St John's, Canada (

A leading contender for explaining the mid-Pleistocene transition (MPT) from small 40 kyr glaciations to large, abruptly terminating 100 kyr ones is a shift to high friction bed under the Northern hemisphere ice sheets – the North American ice sheet in particular. The regolith hypothesis posits that this occurred with the removal of deformable regolith – laying bare higher-friction bedrock under ice sheet core domains. Is the regolith hypothesis consistent with the physics of glacial removal of mechanically weak surface material?                


Self-consistency of the regolith hypothesis has not been tested for a realistic, 3D North American ice sheet, capturing the transition from soft to hard bedded and 40 to 100 kyr cycles, fully considering basal processes and sediment production. To test self-consistency, we simulate the pace and distribution of regolith removal in a numerical ice sheet model incorporating the relevant glacial processes and their uncertainties. Specifically, the Glacial Systems Model includes: fully coupled sediment production and transport, subglacial hydrology, glacial isostatic adjustment, 3D thermomechanically coupled hybrid ice physics, and internal climate solution from a 2D non-linear energy balance model. The sediment model produces sediment via quarrying and abrasion while transporting material englacially and subglacially. The subglacial hydrology model employs a linked-cavity system with a flux based switch to tunnel drainage, giving dynamic effective pressure needed for realistic sediment and sliding processes. Deflection and rebound of the Earth's surface are calculated for a range of solid Earth visco-elastic rheologies.  The coupled system is driven only by prescribed atmospheric CO2 and orbitally derived insolation.


Starting from a range of initial sediment distributions and simulating an ensemble of model parameter values, we model the rate and spatial distribution of regolith dispersal and compare this against the inferred range of Pliocene regolith thickness, the present day sediment distribution, and the timing of the MPT. A first order fully coupled representation of ice, climate and sediment interactions captures the transition within parametric and observational uncertainty. The system gives the shift from 40 to 100 kyr glacial cycles while broadly reproducing the present day sediment distribution, inferred early Pleistocene extent, LGM ice volume and deglacial margin locations.

How to cite: Drew, M. and Tarasov, L.: A test of the Regolith Hypothesis with fully coupled glacial sediment and ice sheet modelling, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-10821,, 2022.


Display file

Comments on the display

to access the discussion