Stromboli Volcano observations through the Airborne X-band Interferometric SAR (AXIS) system
- 1Istituto per il Rilevamento Elettromagnetico dell’Ambiente (IREA) – Consiglio Nazionale delle Ricerche (CNR), Italy
- 2Elettra Microwave, Italy
- 3Dipartimento di Ingegneria (DI) - Università degli Studi di Napoli “Parthenope”, Italy
Synthetic Aperture Radar (SAR) represents nowadays a well-established tool for day and night and all-weather microwave Earth Oobservation (EO) [1]. In last decades, a number of procedures EO techniques based on SAR data have been indeed devised developed for investigating several natural and anthropic phenomena the monitoring of affecting our planet. Among these, SAR Interferometry (InSAR) and Differential SAR Interferometry (DInSAR) undoubtedly represent a powerful techniques to characterize the deformation processes associated to several natural phenomena, such as eEarthquakes, landslides, subsidences andor volcanic unrest events [2] - [4].
In particular, such techniques can benefit of the operational flexibility offered by airborne SAR systems, which allow us to frequently monitor fast-evolving phenomena, timely reach the region of interest in case of emergency, and observe the same scene under arbitrary flight tracks.
In this work, we present the results relevant to multiple radar surveys carried out over the Stromboli Island, in Italy, through the Italian Airborne X-band Interferometric SAR (AXIS) system. The latter is based on the Frequency Modulated Continuous Wave (FMCW) technology, and is equipped with a three-antenna single-pass interferometric layout [5].
The considered dataset has been collected during three different acquisition campaigns, carried out from July 2019 to June 2021, and consists of radar data acquired along four flight directions (SW-NE, NW-SE, NE-SW, SE-NW), as to describe flight circuits around the island and to illuminate the Stromboli volcano under different points of view.
References
[1] Moreira, P. Prats-Iraola, M. Younis, G. Krieger, I. Hajnsek, K. P. Papathanassiou, “A tutorial on Synthetic Aperture Radar”, IEEE Geoscience and Remote Sensing Magazine, pp. 6-43, March 2013.
[2] Bamler, R., Hartl, P., 1998. Synthetic Aperture Radar Interferometry. Inverse problems, 14(4), R1.
[3] P. Berardino, G. Fornaro, R. Lanari and E. Sansosti, “A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms”, IEEE Trans. Geosci. Remote Sens., vol. 40, no. 11, pp. 2375-2383, Nov. 2002.
[4] R. Lanari, M. Bonano, F. Casu, C. De Luca, M. Manunta, M. Manzo, G. Onorato, I. Zinno, “Automatic Generation of Sentinel-1 Continental Scale DInSAR Deformation Time Series through an Extended P-SBAS Processing Pipeline in a Cloud Computing Environment”, Remote Sensing, 2020, 12, 2961.
[5] C. Esposito, A. Natale, G. Palmese, P. Berardino, R. Lanari, S. Perna, “On the Capabilities of the Italian Airborne FMCW AXIS InSAR System”, Remote Sens. 2020, 12, 539.
How to cite: Berardino, P., Natale, A., Esposito, C., Palmese, G., Lanari, R., and Perna, S.: Stromboli Volcano observations through the Airborne X-band Interferometric SAR (AXIS) system, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-12364, https://doi.org/10.5194/egusphere-egu22-12364, 2022.