EGU22-2263
https://doi.org/10.5194/egusphere-egu22-2263
EGU General Assembly 2022
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.

EasyGeoModels: a New Tool to Investigate Seismic and Volcanic Deformations Retrieved through Geodetic Data. Software Implementation and Examples on the Campi Flegrei Caldera and the 2016 Amatrice Earthquake 

Giuseppe Solaro1, Sabatino Buonanno1, Raffaele Castaldo1, Claudio De Luca1, Adele Fusco1, Mariarosaria Manzo1, Susi Pepe1, Pietro Tizzani1, Emanuela Valerio1, Giovanni Zeni1, Simone Atzori2, and Riccardo Lanari1
Giuseppe Solaro et al.
  • 1IREA-CNR, Naples, Italy (solaro.g@irea.cnr.it)
  • 2INGV, Rome, Italy

The increasingly widespread use of space geodesy has resulted in numerous, high-quality surface deformation data sets. DInSAR, for instance, is a well-established satellite technique for investigating tectonically active and volcanic areas characterized by a wide spatial extent of the inherent deformation. These geodetic data can provide important constraints on the involved fault geometry and on its slip distribution as well as on the type and position of an active magmatic source. For this reason, over last years, many researchers have developed robust and semiautomatic methods for inverting suitable models to infer the source type and geometry characteristics from the retrieved surface deformations.

In this work we will present a new software we have implemented, named easyGeoModels, that can be used by geophysicists but also by less skilled users who are interested in sources modeling to determine ground deformation in both seismo-tectonic and volcanic contexts. This software is characterized by some innovative aspects compared to existing similar tools, such as (i) the presence of an easy-to-use graphic interface that allows the user, even if not particularly expert, to manage the data to be inverted, the input parameters of one or more sources, the choice of the deformation source (s), effective and simple way; (ii) the possibility of selecting the GPS data to be inverted, simply by selecting the area of interest: in this case the software will automatically consider for the inversion only the GPS stations present in the selected area and will download the relative data from the Nevada Geodetic Laboratory site; (iii) the generation of output files in Geotiff, KMZ and Shapefile format, which allow a faster and more immediate visualization through GIS tools or Google Earth.

Finally, as applications, we will show some preliminary results obtained through the easyGeoModels software on areas characterized by huge deformation both in a volcanic context, such as that of the Campi Flegrei caldera, and a seismo-tectonic one, as for the case of the Amatrice earthquake (central Italy) which occurred on 24 August 2016.

How to cite: Solaro, G., Buonanno, S., Castaldo, R., De Luca, C., Fusco, A., Manzo, M., Pepe, S., Tizzani, P., Valerio, E., Zeni, G., Atzori, S., and Lanari, R.: EasyGeoModels: a New Tool to Investigate Seismic and Volcanic Deformations Retrieved through Geodetic Data. Software Implementation and Examples on the Campi Flegrei Caldera and the 2016 Amatrice Earthquake , EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-2263, https://doi.org/10.5194/egusphere-egu22-2263, 2022.