EGU22-5016
https://doi.org/10.5194/egusphere-egu22-5016
EGU General Assembly 2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.

Antarctic sub-shelf melt during the present and the last interglacial and its impact on ice sheet dynamics

Maxence Menthon1, Pepijn Bakker1, Aurélien Quiquet2,3, and Didier Roche1,3
Maxence Menthon et al.
  • 1Vrije Universiteit Amsterdam, Earth science departement, Amsterdam, The Netherlands
  • 2Institute des Géosciences de l'Environnement, Université Grenoble Alpes, CNRS, IRD, INP, Grenoble, France
  • 3Laboratoire des Sciences du Climat et de l’Environnement (LSCE), UMR8212, CEA/CNRS-INSU/UVSQ, Gif-sur-Yvette Cedex, France

The response of ice sheets to climate changes can be diverse and complex. The amplitude, speed and irreversibility of the melting of the ice sheets due to current anthropogenic emissions remain largely uncertain after 2100. Being able to reconstruct the evolution of the ice sheets during the past climate changes is a possible approach to constrain their future evolution in time scales further than the end of the century.

Here we aim to reconstruct the evolution of the Antarctic ice sheet during the Last Interglacial (LIG, ~ 130 to 115 kyr BP). The LIG was 0.5 to 1˚C warmer than the pre-industrial era with a sea-level between 6 to 9 m above present level. In other words, the Antarctic ice sheet during the LIG can be considered as an analogue to its future evolution. Moreover, it is the interglacial on which we have the most geological records to compare with simulation results.

Knowing that the oceanic forcing is the main driver of the Antarctic ice sheet retreat, we introduced the sub-shelf melt module PICO (Reese et al. 2018) in the ice sheet model (GRISLI, Quiquet et al. 2018) in order to physically compute the melt. We use outputs from the Earth Sytem Model (iLOVECLIM, Roche et al. 2014) to force idealized experiments. Several time periods will be covered: present-day, last glacial maximum and LIG. This work is a first step towards a fully coupled iLOVECLIM-GRISLI-PICO simulation to explicitly take into account the ice sheet climate - interactions in a physical way in simulations of the Antarctic ice sheet during the LIG and future centuries.

How to cite: Menthon, M., Bakker, P., Quiquet, A., and Roche, D.: Antarctic sub-shelf melt during the present and the last interglacial and its impact on ice sheet dynamics, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-5016, https://doi.org/10.5194/egusphere-egu22-5016, 2022.