How middle and upper continental crust reacts to prolonged extension: some clues from the Simplon Fault Zone (Central Alps)
- University of Milano-Bicocca, Department of Earth and Environmental Sciences, Milano, Italy (chiara.montemagni@unimib.it)
Crustal scale low-angle normal faults are typical tectonic features in orogenic post-collisional setting driving the exhumation of deep portions of the orogenic wedge. These extensional structures are commonly active at mid to upper crustal levels within quartz- and feldspar-rich rocks. As deformation localizes along these large-scale shear zones, the understanding of mechanisms controlling their development could provide invaluable insights on the rheology of the continental lithosphere. PT ambient conditions, differential stress, pore fluid pressure and time duration of activity are all factors that could significantly operate on how a shear zones develops in space and time.
We investigated by means of a quantitative approach the evolution of the Simplon Fault Zone (Western Alps, N Italy – Switzerland). We took into account: (i) meso- and microstructures distribution across the shear zone, (ii) its time of activity by 40Ar/39Ar dating of syn-shearing micas, (iii) vorticity distribution across the shear zone and its correlation with mylonite ages, (iv) the estimates of magnitude and variation of differential flow stress and strain rates during shear zone evolution obtained through EBSD-assisted quantitative microstructural analysis. All these data have been combined to reconstruct the structural evolution of the shear zone as the result of the rheological response of involved rocks to changing PT and stress conditions.
The Simplon Fault Zone formed as an extensional detachment accommodating E-W directed lateral extrusion after the collision between Adria and Europe. Several tens of kilometres of extension were accommodated by this structure, allowing the exhumation of the deepest portions of the Central Alps. The shear zone evolved from epidote-amphibolite to greenschist facies and then brittle conditions during shearing. A decrease of simple shear component from c. 90% to c. 40% towards the top of the shear zone is observed, with mylonites displaying ages within the 12-8 Ma time interval. Calculated differential stress (60-80 MPa) and strain rate (10-11-10-12 s-1) estimates are in agreement with values displayed by several others crustal-scale low-angle normal faults developed at medium to shallow crustal levels.
The quantitative approach used at different scales pointed out that the Simplon Fault Zone experienced a complex evolution, with shear strain that was heterogeneously distributed across the fault zone. Despite this heterogeneity, a general decrease of the simple shear component and increase of the differential flow stress toward the top of the shear zone is clearly defined.
How to cite: Montemagni, C. and Zanchetta, S.: How middle and upper continental crust reacts to prolonged extension: some clues from the Simplon Fault Zone (Central Alps), EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-5040, https://doi.org/10.5194/egusphere-egu22-5040, 2022.