EGU22-7619
https://doi.org/10.5194/egusphere-egu22-7619
EGU General Assembly 2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.

Effect of normal fault activity on carbonate reservoir diagenetic evolution (Urgonian facies, SE France)

Irène Aubert1, Phillippe Léonide2, François Fournier2, Hugues Bitault3, Juliette Lamarche2, Nicolas Godeau2, Pierre Deschamps2, Rodigo Correa4, and Lionel Marié2
Irène Aubert et al.
  • 1Laboratoire des Complexes et leurs Réservoirs – IPRA, E2S-UPPA, TotalEnergies, CNRS, Université de Pau et des Pays de l’Adour, UMR5150 Pau, France
  • 2Aix-Marseille Université, CNRS, IRD, INRAE, Cerege, Um 34, 3 Place Victor Hugo (Case 67), 13331 Marseille Cedex 03, France
  • 3The University of Manchester, Wiliamson Building, Oxford Road Manchester M13 9PL, United Kingdom
  • 4Bureau of Economic Geology, John A. and Katherine G. Jackson School of Geosciences, University of Texas at Austin, Austin, Texas 78713-8924

Normal fault zones can have a significant role on fluid flows as they can form barriers or drains (Agosta et al., 2010; Bense et al., 2013; Brogi and Novellino, 2015). In carbonates rocks, which are very sensitive to fluid-rock interactions, these fault-related fluid flows can strongly enhance or alter carbonate reservoir properties (Deville de Periere et al., 2017; Fournier and Borgomano, 2009).

This work aims at determine fluid flow evolution in a carbonate reservoir affected by a normal fault. For this purpose, we studied structural and diagenetic properties of the Esperelles normal fault and the surrounding Barremian and Aptian formations located on the northern flank of Nerthe anticline (SE France). Esperelles fault developed during the Durancian uplift (Albian) and was weakly reactivated during the opening of Liguro-Provençal basin during Oligo-Miocene times.

We defined seven different cements under cathodoluminescence (C0 to C6), their distributions along the outcrop, their geochemical properties (18O and 13C stable isotopes, Δ47 thermometry), and their ages (U-Pb). Diagenetic properties have been correlated with petrophysical measurements. We determined the paragenetic sequence, as well as the nature and temperature of the fluids that led to the formation of C1 and C6 cements. Four U-Pb ages have been obtained using an ELEMENT XR (Thermo-Fisher) SF-ICP-MS coupled to a 193 nm Excimer Laser (ESI) at CEREGE (Aix-en-Provence, France).  These ages allowed to relate the C6 cementing phase with the opening of Liguro-Provençal basin. This study shows that fault zone development impacted reservoir fluid flows, leading to significant diagenetic events and development of heterogeneous reservoir properties.

 

References

Agosta, F., Alessandroni, M., Antonellini, M., Tondi, E. and Giorgioni, M.: From fractures to flow: A field-based quantitative analysis of an outcropping carbonate reservoir, Tectonophysics, 490(3–4), 197–213, doi:10.1016/j.tecto.2010.05.005, 2010.

Bense, V. F., Gleeson, T., Loveless, S. E., Bour, O. and Scibek, J.: Fault zone hydrogeology, Earth-Science Rev., 127, 171–192, doi:10.1016/j.earscirev.2013.09.008, 2013.

Brogi, A. and Novellino, R.: Low Angle Normal Fault (LANF)-zone architecture and permeability features in bedded carbonate from inner Northern Apennines (Rapolano Terme, Central Italy), Tectonophysics, 638(1), 126–146, doi:10.1016/j.tecto.2014.11.005, 2015.

Deville de Periere, M., Durlet, C., Vennin, E., Caline, B., Boichard, R. and Meyer, A.: Influence of a major exposure surface on the development of microporous micritic limestones - Example of the Upper Mishrif Formation (Cenomanian) of the Middle East, Sediment. Geol., 353, 96–113, doi:10.1016/j.sedgeo.2017.03.005, 2017.

Fournier, F. and Borgomano, J.: Critical porosity and elastic properties of microporous mixed carbonate-siliciclastic rocks, Geophysics, 74(2), E93–E109, doi:10.1190/1.3043727, 2009.

How to cite: Aubert, I., Léonide, P., Fournier, F., Bitault, H., Lamarche, J., Godeau, N., Deschamps, P., Correa, R., and Marié, L.: Effect of normal fault activity on carbonate reservoir diagenetic evolution (Urgonian facies, SE France), EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-7619, https://doi.org/10.5194/egusphere-egu22-7619, 2022.

Displays

Display file