EGU23-11255
https://doi.org/10.5194/egusphere-egu23-11255
EGU General Assembly 2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.

Experimental data on REE in apatite in high-REE environments: distinguishing magmatic and metasomatic compositions

Irina Zhukova and Aleksandr Stepanov
Irina Zhukova and Aleksandr Stepanov
  • China University of Geosciences, Wuhan, China (irina.a.zhukova@gmail.com)

Apatite with high REE content is common in alkaline rocks, carbonatites and products of hydrothermal processes. The REE concentrations could enter mineral structure by different substitution mechanisms (Fleet et al., 2000) and the factors controlling the composition of high-REE apatite are not completely understood. New experimental data (Stepanov et al., 2023) show that at 800 °C and 10 kbar apatite crystalizing from felsic melt with addition of NaCl contains 14 wt.% ΣREEOx and coexists with britholite (37.2 wt.% ΣREEOx). The results suggest that equilibrium has been established during the run and both apatite and britholite contained REE in [Si4+REE3+] to [Ca2+P5+] solid solution, whereas the coupled substitution [Na1+REE3+] to [2Ca2+] was insignificant despite crystallisation from an alkaline, Na-rich melt. Coupling of the new experimental data allowed to constrain the width of the miscibility gap between apatite and britholite, and suggest complete miscibility between apatite and britholite above 950 °C. The substitution [Na1+REE3+] apparently develops mainly in apatite replacement reactions. Therefore, REE content and substitution mechanisms could be useful tools for interpretation of magmatic and metasomatic/hydrothermal associations in alkaline volcanic and plutonic rocks.
References 
Fleet, M., Liu, X., Pan, Y., 2000. Rare-earth elements in chlorapatite [Ca-10(PO4)(6)Cl-2]: Uptake, site preference, and degradation of monoclinic structure. American Mineralogist 85, 1437–1446.
Stepanov, A.S., Zhukova, I.A., Jiang, S.-Y., 2023. Experimental constraints on miscibility gap and partitioning between britholite and chlorapatite in alkaline melt. American Mineralogist.

How to cite: Zhukova, I. and Stepanov, A.: Experimental data on REE in apatite in high-REE environments: distinguishing magmatic and metasomatic compositions, EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-11255, https://doi.org/10.5194/egusphere-egu23-11255, 2023.