Mining the future: new trends and technological advances in mining exploration and production // Novel developments in understanding the petrogenesis of REE resources: Modelling, experimental petrology, mineralogy, and geochemistry
Co-organized by GI6/NP8/PS1
Convener: Giorgia StasiECSECS | Co-conveners: Hamed Pourkhorsandi, Michael BernerECSECS, Wei ChenECSECS, Sam Broom-FendleyECSECS, Martin Smith, Eva Hartai

First part - Mining the future

Research and innovation in exploration and mining of raw materials is increasingly focused on the prospect of developing new methods and technologies to reduce the environmental footprint of mineral extraction and exploration.

The robotization of exploration/production platforms, such as robotic autonomous explorers and miners, will allow to reconsider “non-economical” deposits (abandoned, small, ultra-depth), and to open as well towards the autonomous exploration and exploitation of other non-terrestrial bodies, including asteroids and moons.

Technological advances in the production process, included, but not limited to, X-ray sensors, hyper spectral techniques, LIBS, electromagnetic, combined with machine learning, AI models and efficient mechatronic solutions, will pave the way to a green mining industry.

We welcome contributions from researchers working on applied or interdisciplinary studies associated with mining exploration, geophysics, geochemistry, metallurgy, selective mining.

Second part - Novel developments in understanding the petrogenesis of REE resources

As a result of the critical need for rare earth elements (REE) in new technologies, in particular green energy production, the number of geological studies focusing on their ore formation have recently increased. REE deposits form in a variety of igneous and sedimentary environments. However, depending on factors such as relative and absolute REE content, mineralogy of the REE-bearing phases, host rock properties etc., their economic value can vary significantly. In addition to economic geology, REE deposits are ideal laboratories for understanding the elemental and isotopic behaviour of these elements in different geological environments, as well as the petrogenesis of their host rocks (e.g., carbonatites, alkaline igneous rocks, laterites, phosphorites etc.).
In this session, we will discuss new developments in understanding the formation of already known and recently discovered REE deposits. Studies based on different methodologies including new mathematical modelling techniques, field mapping, experimental petrology, mineralogical observations, in-situ and whole rock elemental and isotopic characterization will be discussed.

We welcome submission of studies conducted on different geological environments with different techniques discussing the conditions leading to concentration (and possibly differentiation) of the REE.