Dense spatial variation of the eukaryotic and prokaryotic communities on the Gulkana Glacier, Alaska
- 1Hokkaido University, Field Science Center for Northern Hemisphere, (jun.uetake@fsc.hokudai.ac.jp)
- 2Chiba University, Graduate School of Science and Engineering
- 3Chiba University, Graduate School of Science
Glacier retreat due to the warming climate is remarkable all over the world. In addition to climate warming, the “biological albedo reduction”, which the pigmented algae reduce the albedo of the glacier, enhances ice melting. Therefore, the spatial distribution of those algae is important for the glacier's mass balance. Although the altitude result in the air temperature and the duration of snow cover is recognized as the factor to affect the spatial distribution, the distribution pattern is more heterogeneous in the same altitude area. To understand the heterogeneity of snow algae and associating microbes and their effects on the glacier albedo, both eukaryotic and prokaryotic communities were analyzed using an amplicon sequencing approach in the dense coverage of the ablation area of a single glacier (total 54 sites over Gulkana Glacier, AK, USA). Furthermore, microbial diversities were analyzed with environmental factors such as carbon contents and nutrients. As a result, we found the green algae amplicon sequence variants (ASVs) closely related to the pigmented algae, Sanguina nivaloides, and Chlainomonas sp. from the surface ice and cryoconite and will show the spatial variation of microbial community structures and diversities and the relationship between the environmental factors.
How to cite: Uetake, J., Ono, M., Usuba, S., Tsushima, A., and Takeuchi, N.: Dense spatial variation of the eukaryotic and prokaryotic communities on the Gulkana Glacier, Alaska, EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-11725, https://doi.org/10.5194/egusphere-egu23-11725, 2023.