Variability in North Sea wind energy and the potential for prolonged winter wind drought
- 1Met Office, Exeter, United Kingdom
- 2College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, United Kingdom
The UK is committed to substantially increasing offshore wind capacity in its drive to decarbonise electricity production and achieve net zero. If low wind episodes – or “wind drought” events – occur during high energy demand periods, energy security may be threatened without alternative supply. To ensure resilience of the power system now and in the coming years as offshore wind generation grows, better understanding of the severity, frequency and duration of low wind episodes would be useful. Variability in winds is likely to dominate over trends in the next few decades, and hence having improved information on present day characteristics of wind drought is valuable.
Here we focus our attention on the North Sea as a centre of current and planned offshore wind resource for the UK and a number of other European countries, and on the winter season, given the occurrence of weather patterns that risk security of supply. We use a large ensemble of initialised climate model simulations to provide a synthetic but realistic event set that greatly increases the sample size of extreme events compared with that available from reanalysis data, and gives more robust information about their likelihood and properties. Using the basic unit of a week of low winds as the timescale of analysis, we report on the frequency and duration of wind drought events. In addition, we examine the wider conditions associated with wind drought events to investigate what remote factors may contribute to prolonged wind drought.
How to cite: Kay, G., Dunstone, N., Maidens, A., Scaife, A., Smith, D., Thornton, H., Dawkins, L., and Belcher, S.: Variability in North Sea wind energy and the potential for prolonged winter wind drought, EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-13309, https://doi.org/10.5194/egusphere-egu23-13309, 2023.