EGU23-1393, updated on 22 Feb 2023
https://doi.org/10.5194/egusphere-egu23-1393
EGU General Assembly 2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.

Investigating the environmental implications of biogas production pathways using life cycle impact assessment model to support regional energy transitions

Amarachi Kalu
Amarachi Kalu
  • Ludwig Maximilians University, Geography, Munich, Germany (a.kalu@iggf.geo.uni-muenchen.de)

The regional energy transition requires a growing share of alternative technologies powered by biomass sources,
for which not all their environmental impacts have been fully understood yet. The UN and the sustainable
development goal (SDG’s) seven encourage a cleaner, safer and modern energy production for all to uphold
environmental and climatic protection. This case study aims to apply the Life Cycle Assessment (LCA) modeling
tool such as the openLCA in assessing wholly (from up to downstream) the environmental, socio-economic and
engineering perspectives of energy transitions.
The Purpose is to analyze the environmental impacts of maize silage production for biogas production in support
of clean and affordable energy. This means, analyzing the supply chain activities from upstream to the downstream
to obtain the impacts on ecosystem and its services. The objectives of this research are to (a) explore different
bioenergy emission and climate change related problems while finding the tradeoffs across various impacts when
maize silage is used as feedstock. (b) To discover current natural gas production technology pathways in Alberta,
the oil exploration province of Canada and compare them with biogas production impacts

The Method applied is the Eco-indicator 99, E, E method, used in analyzing life cycle impact assessment worst-
case scenario of products or services, while comparing the effects with the TRACI & ReCipe methods across board. It provides robust quantitative estimates of GHG emissions, eutrophication, climate impacts, health and land-use impacts of maize silage production for biogas on a regional scale.
From the study’s scientific findings, relevant information on the interconnectedness of bioenergy environmental
impact is generated, which are also useful/applicable for Canada and globally. The result found that the use of high
nitrogen fertilizer (above 120 kg/h) contributes to high eutrophication potentials and drying of the maize silage
has high climate change potentials which proves that biogas production from maize silage is not completely clean
but can be improved
In conclusion. It concludes that biogas systems can decarbonize regional fossil energy grids, drying of the silage
be carried out in summer with biogas and natural gas mix, and supports the moderate use of farm chemicals to
create a balance between bioenergy development and environmental prosperity. the project is significant because
it comprehensively states the need for reduction of excessive emission of greenhouse
gases, land conversion, and nutrient delivery through biogas production and other energy transition activities that
have the potential to increase global warming, damage water and land resources in Alberta which is scarcely available.

KEYWORDS: Energy transition, Environmental impacts, Life cycle impact assessment, Openlca Eco indicator
99, biogas production, Sustainable Environmental.

How to cite: Kalu, A.: Investigating the environmental implications of biogas production pathways using life cycle impact assessment model to support regional energy transitions, EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-1393, https://doi.org/10.5194/egusphere-egu23-1393, 2023.