EGU General Assembly 2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.

A novel user-friendly Jupyter-based tool for analysing orbital subsurface sounding radar data.

Giacomo Nodjoumi1, Sebastian Emanuel Lauro2, and Angelo Pio Rossi1
Giacomo Nodjoumi et al.
  • 1Constructor University Bremen gGmbH (formerly Jacobs University Bremen gGmbH), Bremen, Germany (
  • 2Dipartimento di Matematica e Fisica, Università degli studi Roma Tre, Via della vasca navale 84, 00146, Roma

Orbital radars, such as the SHAllow RADar (SHARAD) [1] or the Mars Advanced Radar for Subsurface and Ionosphere Sounding (MARSIS) [2] instruments on board Mars Reconnaissance Orbiter (MRO) and Mars Express (MEX) respectively, provide valuable data about the Martian subsurface [3,4].

Common analysis methodologies comprise a direct comparison between the radargram (RDR) and the corresponding Surface Clutter Simulation (SCS) to visually spot any subsurface reflector. The surface time delays converted in the space domain are then compared with the corresponding topographic profile to check if any discrepancy occurred. and thus be mistaken for subsurface reflections. Once confirmed that the subsurface reflector is valid, the proper picking can be performed by looking at the radargram and both the radargram and the simulation power intensities. Finally, it is possible to estimate the real dielectric constant ε', which is the real component of the complex permittivity ε' - iε'' using Equation Eq1 [3]:

where Δt is the two-way travel time between the surface and the subsurface reflector, c is the speed of light in a vacuum and h is the reflector’s depth. Assuming different values for ε' and inverting Eq1, is possible to estimate the depth, thus the thickness of the reflector’s unit. In this work, we present the first pre-release of a user-friendly interface, with which is possible to easily perform the above analysis while granting robustness and reproducibility. Besides, it is possible to implement further custom processing functions to increase the accuracy of the results and/or expand the tool capabilities. We started the development using SHARAD US RDR and SCS, while MARSIS compatibility is under implementation. We provided also additional Jupyter notebooks for data download. This tool is based on the Jupyter lab environment and open-source python packages served as a docker container.

Open Research: The tool presented here is available on GitHub [5]

Funding: This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreements No 101004214 and No 871149.


[1] Seu, R., et al., SHARAD Sounding Radar on the Mars Reconnaissance Orbiter., doi:10.1029/2006JE002745.

[2] Jordan, R., et al., The Mars Express MARSIS Sounder Instrument. doi:10.1016/j.pss.2009.09.016.

[3] Shoemaker, E.S., et al., New Insights Into Subsurface Stratigraphy Northwest of Ascraeus Mons, Mars, Using the SHARAD and MARSIS Radar Sounders. doi:10.1029/2022JE007210.

[4] Lauro, S.E., et al., Using MARSIS Signal Attenuation to Assess the Presence of South Polar Layered Deposit Subglacial Brines. doi:10.1038/s41467-022-33389-4.

[5] Nodjoumi, G. MORDOR - Mars Orbital Radar Data Open-Reader 2023.

How to cite: Nodjoumi, G., Lauro, S. E., and Rossi, A. P.: A novel user-friendly Jupyter-based tool for analysing orbital subsurface sounding radar data., EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-14760,, 2023.