EGU23-15214, updated on 30 Oct 2023
https://doi.org/10.5194/egusphere-egu23-15214
EGU General Assembly 2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.

Al, Si diffusion in bridgmanite to estimate the Earth's lower mantle rheology

Laura Czekay, Nobuyoshi Miyajima, and Daniel Frost
Laura Czekay et al.
  • Bayerisches Geoinstitut, experimentelle Mineralogie, Germany (laura.czekay@uni-bayreuth.de)

The diffusion of atoms in minerals at high temperatures and pressures influences Earth’s lower mantle dynamic processes. This study aims to better understand the physical behaviour of Earth’s most abundant mineral with implications for lower mantle viscosity. Previous studies that measured Si-self diffusion coefficients in bridgmanite (Brg) showed a value at 25 ± 1 GPa and 1800 °C of Log10(DSi) = -18 ± 0.5 (based on units of m2/s). Our study revealed a significantly slower diffusion coefficient that may challenge previous calculations of lower mantle viscosity. We investigated Al, Si interdiffusion in Brg experimentally at 24 GPa and 1750 to 2000 °C using a multianvil apparatus using diffusion couples composed of bridgmanites that were pre-synthesised from 0-5 mol.% Al2O3-bearing MgSiO3 enstatite. The Al diffusion profiles were analysed across the diffusion interface in the recovered samples using a scanning transmission electron microscope equipped with an energy-dispersive X-ray spectrometer. The obtained diffusion coefficient for interdiffusion (volume diffusion) at 24 GPa and 1800 °C was Log10(DAl,Si) = -20.1 ± 0.7. The resulting data can be used to estimate deformational strain rates of Brg in the lower mantle from viscosity based on different creep mechanisms.

How to cite: Czekay, L., Miyajima, N., and Frost, D.: Al, Si diffusion in bridgmanite to estimate the Earth's lower mantle rheology, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-15214, https://doi.org/10.5194/egusphere-egu23-15214, 2023.