EGU23-16899
https://doi.org/10.5194/egusphere-egu23-16899
EGU General Assembly 2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.

Long-term atmospheric bias teleconnection and the associated spatio-temporal variability originating from the tropical Indian Ocean sea surface temperature errors

Yuan-Bing Zhao, Nedjeljka Žagar, Frank Lunkeit, and Richard Blender
Yuan-Bing Zhao et al.
  • Universität Hamburg, Meteorological Institute, meteorology, Germany (yuan-bing.zhao@uni-hamburg.de)

The state-of-the-art climate models suffer from significant sea surface temperature (SST) biases in the tropical Indian Ocean (TIO), greatly damaging the climate prediction and projection. In this study, we investigate the multidecadal atmospheric bias teleconnections caused by the TIO SST biases and their impacts on the simulated atmospheric variability. A set of century long simulations forced with idealized SST perturbations, resembling various persistent TIO SST biases in coupled climate models, are conducted with an intermediate complexity climate model. Bias analysis is performed using the normal-mode function decomposition which can differentiate between balanced and unbalanced flow regimes across spatial scales. The results show that the long-term atmospheric circulation biases caused by the TIO SST biases have the Matsuno-Gill-type pattern in the tropics and Rossby wavetrain distribution in the extratropics, similar to the steady state response to tropical heating. The teleconnection between the tropical and extratropical biases is set up by the Rossby wavetrain emanating from the subtropics. Over 90% of the total bias energy is stored in the zonal modes k≤6, and the Kelvin modes take 50-65% of the total unbalanced bias energy. The spatial and temporal variabilities have different responses to positive SST biases. In the unbalanced regime, variability changes are confined in the tropics, but the spatial variability increases whereas the temporal variability decreases. In the balanced regime, the spatial variability generally increases in the tropics and decreases in the extratropics, whereas the temporal variability decreases globally. Variability responses in the tropics are confined in the Indo-west Pacific region, and those in the extratropics are strong in the Pacific-North America region and the Europe. In the experiment with only negative SST biases, spatial and temporal variabilities increase in both regimes. In addition, the comparison between experiments indicates that the responses of the circulation and its variability are not sensitive to the structure and location of the TIO SST biases.

How to cite: Zhao, Y.-B., Žagar, N., Lunkeit, F., and Blender, R.: Long-term atmospheric bias teleconnection and the associated spatio-temporal variability originating from the tropical Indian Ocean sea surface temperature errors, EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-16899, https://doi.org/10.5194/egusphere-egu23-16899, 2023.