EGU23-17053
https://doi.org/10.5194/egusphere-egu23-17053
EGU General Assembly 2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.

Detection of correlated anomalous seismic and geomagnetic precursor signals before Vrancea moderate size earthquakes

Iren Adelina Moldovan, Victorin Toader, Andrei Mihai, Felix Borleanu, Laura Petrescu, Anica Otilia Placinta, and Liviu Manea
Iren Adelina Moldovan et al.
  • National Institute for Earth Physics, RDI Dep, Magurele, Romania (irenutza_67@yahoo.com)

Our study aims to detect anomalous seismic and geomagnetic precursor signals appearing before Vrancea, Romania medium sized earthquakes, that occurred in the last decade (2012-2022), using in the first step the visualization processing method, to identify the time lap between the two anomalies and the following earthquakes. During the study period, in Vrancea seismogenic zone there have been recorded 39 earthquakes with magnitude ML>=4.5, both at normal and intermediate depth. We have assumed that the zone of effective manifestation of the precursor deformations is a circle with the radius taken from the equation of Dobrovolsky, 1979, so the studies were done inside this zone. The Seismic data consists in seismic velocities vp and vs (vp/vs), computed from the arrivals of seismic waves at the NIEP stations situated in the earthquake preparation area. The calculations are done automatically by the Phenomenal platform https://ph.infp.ro/seismicity/data, using the corrected Romanian seismic bulletins. The seismic velocity is the geophysical property that has a key role in characterizing dynamic processes and the state of the stress around the faults, providing significant information regarding the change in tectonic regime. In the crust, velocities change before, during and after earthquakes through several mechanisms related to, for example, fault deformations, pore pressure, changes in stress state (pressure perturbation) and rebound processes.

The Geomagnetic data are obtained from Muntele Rosu (MLR) Seismological Observatory of NIEP, situated inside Vrancea seismogenic zone as primary station, and from Surlari (SUA) Geomagnetic Observatory of Intermagnet, as remote station, unaffected by medium size earthquake preparedness processes. Geomagnetic indices taken from GFZ (https://www.gfz-potsdam.de/kp-index) were used to separate the global magnetic variation from possible local seismo-electromagnetic anomalies, that might appear in a seismic area like Vrancea zone and to ensure that observed geomagnetic fluctuations are not caused by solar-terrestrial effect.

In this presentation we study the appearance of the changes of seismic propagation velocities (vp/vs) in time and the geomagnetic deviations from the normal trend before the occurrence of moderate size crustal and intermediate earthquakes from Vrancea zone, to emphasize the time span between the studied phenomena, in order to be able to find a statistical correlation between them.

Acknowledgements. This work was funded by: PN23 36 02 01/2023 SOL4RISC Nucleu Project, by MCD, Phenomenal Project PN-III-P2-2.1-PED-2019-1693, 480PED/2020 and AFROS Project PN-III-P4-ID-PCE-2020-1361, PCE/2021 supported by UEFISCDI

How to cite: Moldovan, I. A., Toader, V., Mihai, A., Borleanu, F., Petrescu, L., Placinta, A. O., and Manea, L.: Detection of correlated anomalous seismic and geomagnetic precursor signals before Vrancea moderate size earthquakes, EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-17053, https://doi.org/10.5194/egusphere-egu23-17053, 2023.