NH4.1 | Short-term Earthquakes Forecast (StEF) and multi-parametric time-Dependent Assessment of Seismic Hazard (t-DASH)
Short-term Earthquakes Forecast (StEF) and multi-parametric time-Dependent Assessment of Seismic Hazard (t-DASH)
Co-organized by EMRP1/GI6/SM3, co-sponsored by JpGU and EMSEV
Convener: Valerio Tramutoli | Co-conveners: Pier Francesco Biagi, Carolina Filizzola, Nicola Genzano, Iren Moldovan
Orals
| Fri, 28 Apr, 08:30–10:15 (CEST)
 
Room 1.15/16
Posters on site
| Attendance Fri, 28 Apr, 14:00–15:45 (CEST)
 
Hall X4
Posters virtual
| Attendance Fri, 28 Apr, 14:00–15:45 (CEST)
 
vHall NH
Orals |
Fri, 08:30
Fri, 14:00
Fri, 14:00
From the real-time integration of multi-parametric observations is expected the major contribution to the development of operational t-DASH systems suitable for supporting decision makers with continuously updated seismic hazard scenarios. A very preliminary step in this direction is the identification of those parameters (seismological, chemical, physical, biological, etc.) whose space-time dynamics and/or anomalous variability can be, to some extent, associated with the complex process of preparation of major earthquakes.
This session wants then to encourage studies devoted to demonstrate the added value of the introduction of specific, observations and/or data analysis methods within the t-DASH and StEF perspectives. Therefore, studies based on long-term data analyses, including different conditions of seismic activity, are particularly encouraged. Similarly welcome will be the presentation of infrastructures devoted to maintain and further develop our present observational capabilities of earthquake related phenomena also contributing in this way to build a global multi-parametric Earthquakes Observing System (EQuOS) to complement the existing GEOSS initiative.
To this aim this session is not addressed just to seismology and natural hazards scientists but also to geologist, atmospheric sciences and electromagnetism researchers, whose collaboration is particular important for fully understand mechanisms of earthquake preparation and their possible relation with other measurable quantities. For this reason, all contributions devoted to the description of genetic models of earthquake’s precursory phenomena are equally welcome.

Orals: Fri, 28 Apr | Room 1.15/16

Chairpersons: Valerio Tramutoli, Nicola Genzano, Pier Francesco Biagi
08:30–08:35
Session 1 (Conveners Nicola Genzano, Jann-Yenq Liu)
08:35–08:45
|
EGU23-2087
|
On-site presentation
Chieh-Hung Chen, Kai Lin, Xuemin Zhang, and Yongxin Gao

An instrumental array was established in southwest China for Monitoring Vibrations and Perturbations in the Lithosphere, Atmosphere and Ionosphere (MVP-LAI).  We retrieved multiple-geophysical data from the array to investigate common characteristics in LAI before earthquakes.  Broadband seismometers are utilized to monitor ground vibrations in the lithosphere.  Barometers record changes in air pressure near the Earth’s surface.  Magnetometers monitor variations in the ionospheric currents ~100 km above the Earth’s surface.  Instead of GPSTEC (Global Positioning System Total Electron Content), electromagnetic signals transmitted from the BDS (BeiDou navigation system) geostationary satellites are received by ground-based GNSS (Global Navigation Satellite System) receivers to compute TEC data.  The BDSTEC from the geostationary satellites continuously monitor changes in TECs ~350 km in altitude right over the array.  We transferred these data into the frequency domain and found that ground vibrations, air pressure, the magnetic field, and BDSTEC data share the frequency ~5×10-3 Hz before major earthquakes.  Ground vibrations exhibit frequency characteristics of ~5×10-3 Hz due to resonance of nature frequencies before failure of materials (i.e., dislocations of faults, and earthquakes).  Ground vibrations with frequency of ~5×10-3 Hz persistently hit the bottom of the atmosphere that can trigger atmospheric resonance before earthquakes.  Double resonance (i.e., crustal and atmospheric resonance) provides the new way to reveal the seismo-anomalies of multiple geophysical parameters in LAI.  Double resonance would shed a light in earthquake prediction in practice once we face the major issue for efficiently retrieving resonance signals from multiple observation data. 

 

How to cite: Chen, C.-H., Lin, K., Zhang, X., and Gao, Y.: Double resonance before earthquakes, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-2087, https://doi.org/10.5194/egusphere-egu23-2087, 2023.

08:45–08:55
|
EGU23-2187
|
ECS
|
On-site presentation
|
|
Dedalo Marchetti, Hanshuo Zhang, Kaiguang Zhu, Zeren Zhima, Rui Yan, Xuhui Shen, Alessandro Piscini, Wenqi Chen, Yuqi Cheng, Xiaodan He, Ting Wang, Jiami Wen, Donghua Zhang, and Yiqun Zhang

On 19 September 2021, La Palma Volcano started a VEI 3 eruption. Here we will illustrate an investigation for at least six months before the eruption with the aim of searching possible lithosphere atmosphere and ionosphere couplings.

We identify and compare the anomalies from the seismic catalogue, the geomagnetic ground observatories, the atmospheric climatological datasets, TEC maps, CSES and Swarm satellites data with respect to the volcano location and the time cumulative trends of anomalies are analyzed.

We identify a temporal migration of the seismicity from one year before the eruption at a depth of 40 km possibly associated with magma migration, firstly to a deep chamber (20-13km depth) and in the last 10 days in a shallower magma chamber. CSES-01 detects an increase in electron density at the same time as vertical ground magnetic field anomalies, very likely due to the magma uprising. A final increase of carbon monoxide 1.5 months before the eruption with unusually high values of TEC suggests the degassing of magma before the eruption associated with shallow seismicity that preceded the eruption by ten days. We identify possible different coupling mechanisms, e.g., chain of mechanical, thermal, chemical and electromagnetic phenomena, or pure electromagnetic coupling). These different lithosphere-atmosphere-ionosphere coupling mechanisms can coexist.

Our results highlight the importance of integrating several observation platforms and datasets from the ground and space (earth observation satellites) to better understand the dynamics of the processes and associated natural hazards affecting our planet.

How to cite: Marchetti, D., Zhang, H., Zhu, K., Zhima, Z., Yan, R., Shen, X., Piscini, A., Chen, W., Cheng, Y., He, X., Wang, T., Wen, J., Zhang, D., and Zhang, Y.: Possible Lithosphere Atmosphere Ionosphere Coupling before 19 September 2021 La Palma volcano eruption, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-2187, https://doi.org/10.5194/egusphere-egu23-2187, 2023.

08:55–09:05
|
EGU23-4399
|
solicited
|
Highlight
|
Virtual presentation
Dimitar Ouzounov, Sergey Pulients, Jann-Yenq Liu, Katsumi Hattori, Menas Kafatos, and Patrick Taylor

We present a study on temporal and spatial characteristics of Thermal Radiation anomalies (TRA) and ionospheric total electron content (TEC) pre-earthquake abnormalities associated with the occurred in 2022 “anniversary” earthquakes. “Anniversary”  is a quake occurring on the same date and following the years after the main earthquake, plus or minus several days.

We studied eleven large earthquakes in four regions: i/Japan: M7.3 of 03.16.2022 and M9.0 of 03.11.2011 East Coast Honshu; ii/Mexico: M7.6 of 09.19.2022 Michoacan; M7.1 of 09.19.2017 Puebla and M8.0 of 09.19.1985 Mexico City;/iii Chile: M5.7 02.28.2022 Bio-Bio and M8.8 02.27.2010 Maule and /iv Taiwan: M6.9 of 09.18.2022 Taitung and M7.7 of 09.21.1999 Chi-Chil and M6.7 of 03.22.2022 Taitung and M6 of 03.27.2013 Nantou earthquake.

We analyzed for TRA and TEC anomalies concerning the earthquake preparation zone (EPZ). For EPZ estimates, we use Dobrovolsky et al. (1979), and Bowman et al. (1998) estimates where the EPZ radius scales exponentially with earthquake magnitude, especially from Mw ≥ 6.0 onwards, and gives an extended coverage at larger magnitudes to examine TRA and ionospheric TEC anomalies. The main goals of this study were: 1/to understand the seismotectonic conditions that preceded the earthquake re-occurrence in the same place and on the same day(s): 2/ to perform a validation study about pre-earthquake signal occurrences in the same atmospheric and solar-geophysical conditions and 3/ to understand the potential triggering mechanism. Our preliminary results show synergetic coordination between the appearance of pre-earthquake transients’ effects in the atmosphere and ionosphere (with a short time lag, from hours up to a few days). The spatial characteristics of pre-earthquake anomalies were associated with the large area but inside the preparation region estimated by Dobrovolsky-Bowman. The pre-earthquake nature of the signals in the atmosphere and ionosphere was revealed by simultaneous analysis of satellite, GPS/TEC, and Satellite Earth observations. The “anniversary” events are recognized with common pre-earthquake transient re-occurrence patterns in the atmosphere/ionosphere within EPZ, scaled to the extent of the earthquake magnitude.

How to cite: Ouzounov, D., Pulients, S., Liu, J.-Y., Hattori, K., Kafatos, M., and Taylor, P.: Transient effects in the atmosphere/ionosphere and their re-occurrence before large earthquakes. Case study for the 2022 “anniversary” events., EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-4399, https://doi.org/10.5194/egusphere-egu23-4399, 2023.

09:05–09:15
|
EGU23-3596
|
ECS
|
On-site presentation
Armen Kazarian and Aik Kazarian

WATER’S GEOCHEMICAL COMPOSITION AS INDICATOR OF GEODYNAMIC ACTIVITY 

A.Kazarian, H. Kazarian IGN AN NAN

 

A detailed analysis of a long-term collection of hydro-geochemical data was carried out over a ten-year period. It revealed consistent iterations of signs of a process of earthquake preparation in this region. This preparation process has several distinct stages, which can be identified by noticeable changes in the geochemical composition of self-pouring well water. The earthquake preparation process is graphically visible and has a similar duration to the post-earthquake aftershock activity duration. The visualization of hydro-geochemical data from the pre- and post-earthquake periods for different (M> 6) earthquakes in this region shows a very similar pattern of behaviors and duration of behaviors for events of varying magnitudes and distances from the observation wells.

Changes in the main fluctuation trend of the geochemical data for helium (He) and a decrease in the standard deviation of the series for other main components appear as earthquake precursors (Na, K, HCO3, SO4, Cl, Ca, F). The detectable duration of a main shock's preparation process is approximately a year. The detailed examination of the data time series reveals a strong correlation between the overall geodynamic activity of the region and the hydrogeochemical composition of the observed wells.

The detailed analysis of earthquake activity in the region suggests a periodic nature of basic seismicity and its relationship with earthquake focal mechanisms. The obtained daily histograms for seismic activity in Armenia, Turkey, Greece, and Italy regions calculated by local time show cyclical activity patterns of 24 and 12 hours. This is consistent with variations in He and other important components in the well waters. The hypothesis and conclusion of this scientific research project are that in seismically active zones, the dynamics of hidden active tectonic processes can potentially be a priori diagnosed using this hydro-geochemical monitoring method.

How to cite: Kazarian, A. and Kazarian, A.: Water chemical composition as indicator of geodynamic activity, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-3596, https://doi.org/10.5194/egusphere-egu23-3596, 2023.

09:15–09:25
|
EGU23-10627
|
ECS
|
Highlight
|
On-site presentation
Zhiqiang Mao and Chieh-Hung Chen

The North-South Seismic Belt of China is one of the most active seismic areas on the Chinese continent.  More than ten strong earthquakes (Ms > 6) have occurred in this region since 2010.  However, Earthquake-related conductivity anomalies are rarely reported for those earthquakes.  In this study, 3-component geomagnetic data recorded at sixty geomagnetic stations are selected to compute the Parkinson vectors to monitor the changes of conductivity before and after the earthquakes.  Considering most fluxgate magnetometers have only been installed since 2014, we concentrate on six Ms > 6 earthquakes occurred during 2014–2019.  To mitigate artificial disturbances, low noise data during the 00:00 – 5:00 LT are utilized.  We compute the background distribution and monitoring distribution using the azimuth of the Parkinson vectors at each station within six years (2014 – 2019) and a 15-day moving window, respectively.  The background distribution is subtracted from the monitoring distributions to mitigate the influences of underlying inhomogeneous tectonic structures.  The obtained difference distributions binned by 10° within 400 km from each station are superimposed during 60 days before and after the earthquake to construct integrated maps.  To analyze the potential frequency characteristics, we compute the results from low to high frequency band.  The results show that for four earthquakes, the conductivity anomalies areas appear near the epicenter 10 to 20 days before earthquakes, while the rest two earthquakes have no anomaly.  The conductivity anomalies appear at all study frequency band from 0.0005 Hz to 0.1 Hz, and significantly at 0.001 – 0.005 Hz before earthquakes.  Meanwhile, we find that the lower frequency band corresponds to larger anomalies area.  These results suggest the change of underlying conductivity near the hypocenter is a possible phenomenon for strong earthquakes, and the frequency characteristics of the seismo-conductivity anomaly during the earthquake are helpful to understand the pre-earthquake anomalous phenomena.

How to cite: Mao, Z. and Chen, C.-H.: Conductivity Anomalies before M > 6 Earthquakes in China during 2014 – 2019, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-10627, https://doi.org/10.5194/egusphere-egu23-10627, 2023.

Session 2 (Conveners Dimitar Ouzounov, Dedalo Marchetti)
09:25–09:35
|
EGU23-17023
|
solicited
|
Highlight
|
On-site presentation
Jann-Yenq Liu, Fu-Yuan Chang, Yuh-Ing Chen, and Chi-Kuang Chao

The mission of Advanced Ionospheric Probe (AIP) onboard FORMOSAT-5 (F5) satellite is to detect seismo-ionospheric precursors (SIPs) and observe ionospheric weathers.  F5/AIP plasma quantities in nighttime of 22:30 LT (local time) and the total electron content (TEC) of the global ionosphere map (GIM) are used to study SIPs of an M7.3 earthquake in the Iran-Iraq Border area on 12 November as well as two positive storms on 7 and 21-22 November 2017.  The TEC and the F5/AIP ion density/temperature anomalously increase over the epicenter area on 3-4 November (day 9-8 before the earthquake) and on the two storm days.  The anomalous TEC increase frequently appearing specifically in a small area near the epicenter day 9-8 before the earthquake indicates the SIP being observed, while those frequently occurring at worldwide high-latitudes are signatures of the two positive storms.  TEC increase anomalies most frequently appearing in the Iran-Iraq Border area on 21-22 November (day 10-9 before) is coincidently followed by an M6.1 earthquake on 1 December 2017, which again meets the temporal SIP characteristic.  The F5/AIP ion velocity uncovers that the SIPs of the two earthquakes are caused by eastward seismo-generated electric fields, and the two positive storms are due to the prompt penetration electric fields.

How to cite: Liu, J.-Y., Chang, F.-Y., Chen, Y.-I., and Chao, C.-K.: Ionospheric electric fields associated with seismo-ionospheric precursors and ionospheric storms observed by FORMOSAT-5/AIP, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-17023, https://doi.org/10.5194/egusphere-egu23-17023, 2023.

09:35–09:45
|
EGU23-9395
|
On-site presentation
Mohammed Y. Boudjada, Pier F. Biagi, Hans U. Eichelberger, Konrad Schwingenschuh, Patrick H.M. Galopeau, Masashi Hayakawa, Maria Solovieva, Helmut Lammer, Wolfgang Voller, and Bruno Besser

We report on two earthquakes (EQs) that occurred in Croatia at a distance less than 200 km from the Austrian Graz facility (15.46°E, 47.03°N). Those EQs happened on March 22 and December 29, 2020, with magnitudes of Mw5.4 and Mw6.4, respectively. The epicenters were at geographical coordinates (16.02°E, 45.87°N; 16.21°E, 45.42°N) with focuses smaller than 10 km.  Austrian Graz facility leads to detect more than fifteen VLF and LF transmitter signals (Schwingenschuh et al., 2011, Biagi et al., 2019). Transmitter ray paths cross over the EQs epicenters in particular those localised in ICV and ITS (Italy) and TBB (Turkey). We emphasize in our study on the signal fluctuations before/after the sunrise- and sunset-times, or terminator times (TTs). Transmitter amplitude signals exhibit precursor anomalies that related to EQs disturbances occurring particularly at the falling off or the growth of the ionospheric D-layer. Ground-based stations (e.g. Rozhnoi et al., 2009) and satellite observations (e.g. Zhang et al., 2020) have reported such EQs ionospheric disturbances at several occasions.

 

References:

Biagi et al., The INFREP Network: Present Situation and Recent Results, Open J. Earth. Research, 8, 2019. Rozhnoi et al., Anomalies in VLF radio signals prior the Abruzzo earthquake (M=6.3) on 6 April, 2009, Natural Hazards and Earth System Science, 9, 2009. Schwingenschuh et al., The Graz seismo-electromagnetic VLF facility, Nat. Hazards Earth Syst. Sci., 11, 2011. Zhang et al., Multi-experiment observations of ionospheric disturbances as precursory effects of the Indonesian Ms6.9 earthquake on August 05 2018, Remote Sens. J., 12, 2020.

 

How to cite: Boudjada, M. Y., Biagi, P. F., Eichelberger, H. U., Schwingenschuh, K., Galopeau, P. H. M., Hayakawa, M., Solovieva, M., Lammer, H., Voller, W., and Besser, B.: VLF transmitter signal variations as detected by Graz facility prior to Croatian earthquakes, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-9395, https://doi.org/10.5194/egusphere-egu23-9395, 2023.

09:45–09:55
|
EGU23-10458
|
On-site presentation
Alejandro Ramírez-Rojas and Elsa Leticia Flores-Márquez

The temporal sequences of magnitudes recorded in seismic active zones exhibit complex behavior which is associated with the wide diversity of scales of fractures sizes when an earthquake on the Earth’s crust occurs. Earthquakes can be considered to be nearly, or even critical phenomena exhibiting dynamic phase transitions, where a mainshock is the beginning of a new phase. Near the critical point is where phase transition (order-disorder) occurs, and scaling laws with long-range order correlations are produced, so that the complexity of seismicity allows earthquakes to be characterized by a more diverse and riche phenomenology. In the last years, the ideas linked to nonlinear time series analysis and complex network theory have been related. Among those ideas,  the visibility graph (VG) method has been applied to the study different complex phenomena. One of the characteristics of this method is its ability to capture dynamic properties, such as non-trivial correlations in nonstationary time series, without introducing elaborate algorithms such as detrending. Seismic processes have been of great interest and their complete understanding is still an open problem. In this work we use the VG method to study the temporal correlations in the seismic sequences monitored in three regions of the subduction zone belonging to the Cocos plate. Our analysis allows estimate persistence and the temporal correlations in the seismic activity monitored in Michoacan State, Mexican Flat Slab and Tehuantepec Isthmus, showing differences in all three.

How to cite: Ramírez-Rojas, A. and Flores-Márquez, E. L.: Correlations of the seismic activity monitored in three subduction zones belonging to Cocos plate by using the visibility graph method., EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-10458, https://doi.org/10.5194/egusphere-egu23-10458, 2023.

09:55–10:05
|
EGU23-13172
|
On-site presentation
Yuriy Rapoport, Volodymyr Reshetnyk, Asen Grytsai, Alex Liashchuk, Masashi Hayakawa, Volodymyr Grimalsky, Sergei Petrishchevskii, Andrzej Krankowski, Leszek Błaszkiewicz, Paweł Flisek, Angelo De Santis, and Carlo Scotto

We have used 2014–2017 data from the eight receiving stations of the Japan very low frequency (VLF) monitoring network. The nighttime data of the signals of the JJI transmitter on Kyushu Island, excited VLF electromagnetic waves (EMWs) in the Earth-Ionosphere waveguide (EIWG) had been processed. The wavelet transform with a preliminary detrending, to exclude influence of daily variations, has been applied. We have observed ultra-low frequency (ULF) modulation of VLF EMW spectra in the EIWG. We therefore concluded that modulating oscillations with periods of 4 minutes belong to the acoustic branch of acoustic-gravity waves (AGWs) in the Earth–Thermosphere waveguide; modulation of VLF with periods of 6–7 minutes corresponds to global evanescent/reactive Brunt–Väisälä AGW oscillations; the oscillations with periods 20–60 min and ~3 hours may characterize evanescent/reactive Lamb gravity wave mode of AGW [1]. The appearance of the combination frequency of VLF EMW and ULF AGW is likely due to the following effects: (1) the drag of charged plasma particles by ULF AGWs jointly with the background of VLF electron density disturbances and (2) the motion of charged plasma particles in the VLF EMW field jointly with the background of ULF changes in the plasma concentration caused by AGWs.

The theory [2,3] is extended to the excitation of ionospheric Schumann resonator (SR) [4] and ionospheric Alfvén resonator (IAR) in the ULF range. It is shown that IAR oscillations with a high quality factor (for geophysical resonators) (>10) can be excited in the SR range. The features of the excited ULF and VLF modes associated with the modification of the ionosphere as a result of the powerful eruption of the Hunga-Tonga volcano are under consideration [5,6].

A ULF model of perturbations in the atmosphere-ionosphere with a boundary transition from dynamic to static limit is developed and the preliminary results of the corresponding modelling will be presented. This ensures the "recovery" of magnetostatic disturbances "lost" in most of previous models of the atmospheric electrical circuit, important for understanding the mechanisms of seismo-ionospheric coupling, volcano-ionospheric coupling and influences of the other natural hazards on the ionosphere and ionospheric monitoring of the natural hazards.

[1] Rapoport et al. Sensors 22, 10.3390/s22218191, 2022; [2] Grimalsky et al. JEMAA 2012, 4, 192-198 ; [3] Yutsis V. et al. Atmosphere 2021, 12, 801 ; [4] Nickolaenko and Rabinovich Space Res. 1982, XX, 67-88 ; [5] Astafyeva et al. GRL, 2022 ; [6] D’Arcangelo et al., Rem. Sens., 14, 3649, 2022.

This research was partially funded by the National Science Centre, Poland, grant No. 970 2022/01/3/ST10/00072

How to cite: Rapoport, Y., Reshetnyk, V., Grytsai, A., Liashchuk, A., Hayakawa, M., Grimalsky, V., Petrishchevskii, S., Krankowski, A., Błaszkiewicz, L., Flisek, P., De Santis, A., and Scotto, C.: ULF perturbations: modeling Earth-Atmosphere-Ionosphere coupling, signal processing using information entropy, determination of the electric and magnetic field components and “experiment-theory comparison“, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-13172, https://doi.org/10.5194/egusphere-egu23-13172, 2023.

10:05–10:15
|
EGU23-8521
|
On-site presentation
|
Hans Eichelberger, Mohammed Y. Boudjada, Konrad Schwingenschuh, Bruno P. Besser, Daniel Wolbang, Maria Solovieva, Pier F. Biagi, Patrick Galopeau, Ghulam Jaffer, Özer Aydogar, Christoph Schirninger, Cosima Muck, Irmgard Jernej, and Werner Magnes

In this study we examine earthquakes with magnitude M>5 in the year 2022 where the epicenters are crossed by sub-ionospheric narrowband VLF/LF radio links. The study regions are Italy, Aegean area, and the Balkan Peninsula. Ideal suited for this task are paths from the transmitters TBB (26.70 kHz, Bafa, Turkey), ITS (45.90 kHz, Niscemi, Sicily, Italy), and ICV (20.27 kHz, Tavolara, Italy) to the seismo-electromagnetic receiver facility GRZ (Graz, Austria). The receiver is part of a wider network, this gives the opportunity to have multiple simultaneous crossings of an earthquake event.

We investigate electric field amplitude variations in the time span a few days around the main shock, in particular we apply the so-called night-time amplitude method. All electric field data sets have 1 sec temporal resolution. A crucial point is a certain threshold magnitude to obtain statistically significant results, but to firm up the results additional complementary investigations are necessary.

In summary, VLF/LF investigations of strong earthquakes show the complex interplay between the lithospheric events and electric field amplitude waveguide variations, multi-parametric observations in a network could be a tool to derive robust results.

How to cite: Eichelberger, H., Boudjada, M. Y., Schwingenschuh, K., Besser, B. P., Wolbang, D., Solovieva, M., Biagi, P. F., Galopeau, P., Jaffer, G., Aydogar, Ö., Schirninger, C., Muck, C., Jernej, I., and Magnes, W.: Sub-ionospheric VLF/LF waveguide variations related to magnitude M>5 earthquakes in the eastern Mediterranean area, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-8521, https://doi.org/10.5194/egusphere-egu23-8521, 2023.

Posters on site: Fri, 28 Apr, 14:00–15:45 | Hall X4

Chairperson: Yuriy Rapoport
X4.46
|
EGU23-13588
|
Highlight
Valerio Tramutoli, Roberto Colonna, Carolina Filizzola, Nicola Genzano, Mariano Lisi, Nicola Pergola, and Valeria Satriano

In order to build and implement a multi-parametric system for a time‐Dependent Assessment of Seismic Hazard (t‐DASH) the preliminary assessment of the selected parameters is required. To this aim a long-term correlation analysis - among anomalous transients and earthquake occurrence – has to be performed to establish the corresponding forecast capability and particularly the expected false-positive rate. In fact, more than the missing rate (i.e. how many earthquakes occurs in absence of specific precursors) the reliability of the forecast is much more important when the continuity of the observations cannot be guaranteed. This is the case of satellite observations in the optical band  whose continuity can be prevented by the presence of meteorological clouds. Among the others candidate parameters anomalous transients in the Earth’s emitted Thermal Radiation observed from meteorological satellites in the Thermal InfaRed band (TIR) have been since long-term proposed in the framework of a multi-parametric t-DASH system. Results achieved by RST (Robust Satellite Technique) analyses of multi-annual (more than 10 years) time series of TIR satellite images in different continents and seismic regimes, allowed to identify (isolating them from all the others possible sources) those anomalies (in the spatial/temporal domain) possibly associated to the occurrence of major earthquakes. Main lesson learnt until now can be summarized as follows:

a) Thanks to a clear definition of (Significant Sequences of TIR Anomalies (SSTAs) and well-defined validation rules, for earthquakes with magnitude greater than 4 the false positive rate is around 25% (average value over Greece, Italy, Japan, Turkey) oscillating from 7% up to 40% strongly depending on the considered region;

b) Molchan error diagram analyses gave a clear indication that a non-casual correlation exist between RST-based SSTAs and earthquake occurrence time and location;

c) SSTAs are quite rare (sporadic) with quite limited (less than 0,05% of the total investigated) alerted space-time volumes;

d) The approach based on the application of the RETIRA index (Robust Estimator of TIR Anomalies) showed some limitation related to the contextual approach that, in order to take into account of possible large scale changes of the thermal background, consider not just the TIR signal itself but its excess respect to the background (large scale spatial average of the TIR signal) introducing, this way, a strong dependence on the presence and distribution of meteorolical cloud across the scene.

In order to overcome the d) issue an alternative possibility has been investigated which can locally filter-out the contributes of occasional warming (typically associated to meteorological fronts) without the need of analyzing the TIR signal at the large-scale. In this paper RST approach is implemented by introducing the RETIRSA (Robust Estimator of TIR Slope Anomalies) devoted to identify anomalous Nocturnal TIR  Gradients in relation with the preparation phases of earthquakes. The impact in reducing the overall false-positive rates will be particularly discussed in the case of recent earthquakes occurred in Italy, Japan and California. 

How to cite: Tramutoli, V., Colonna, R., Filizzola, C., Genzano, N., Lisi, M., Pergola, N., and Satriano, V.: Improving RST-based analysis of long-term TIR satellite observations in relation with earthquake occurrence, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-13588, https://doi.org/10.5194/egusphere-egu23-13588, 2023.

X4.47
|
EGU23-17076
|
solicited
|
Highlight
Katsumi Hattori, Yu-ichiro Ohta, Chie Yoshino, and Noriyuki Imazumi

Various preseismic electromagnetic variations have been reported so far. Oike et al. reported an increase in the number of electromagnetic pulses in the LF band for the 1995 Kobe Earthquake. However, there is a problem that the electromagnetic pulse due to lightning activity, which is a strong electromagnetic radiation source in the LF band, cannot be sufficiently distinguished from the electromagnetic pulse associated with earthquakes. At that time, it was difficult to observe waveforms with the observation equipment (especially digital measurement units), but with the development of today's ICT equipment and Internet technology, it is possible to realize an LF band broadband interferometer that can estimate the spatio-temporal sources of electromagnetic radiation. If it is an electromagnetic pulse due to lightning activity, the electromagnetic radiation source will move with the front or cloud, and if it is associated with an earthquake, the electromagnetic radiation source will be concentrated near the focal region. In this presentation, we will report the progress of the development of the LF band broadband interferometer, and the waveform analysis and pulse number variation of the nearby earthquake that occurred during the test of the interferometer element.

The developed system is a capacitive circular flat plate fast antenna, consisting of a 500 kHz low-pass filter, a 16bit AD converter, and a PC for data recording, and records 100 ms before and after the pulse waveform that exceeds the trigger level with 4 MHz sampling. The system is installed on the roof of the Faculty of Science Building No.5, Chiba University, and is conducting test observations.

First, we counted the total number of pulses recorded by the system, created an amplitude histogram, and targeted the top 15% of the pulses to investigate hourly fluctuations in the number of pulses. We calculated the average value m and standard deviation σ for the entire analysis period, and defined the anomaly in the number of pulses as m + 2σ. Next, using pulse waveforms and the mine location network blitzortung.org, waveforms (near and distant mines) caused by mine discharges were identified. In addition, we analyzed the earthquakes that occurred within 100 km of the epicenter distance and satisfied log(Es)>8 during the observation period, and investigated the relationship with the earthquakes. where Es=101.5M+4.8/r2 (M: magnitude, r: focal distance). As a result, 4 days before the M5.0 earthquake on November 27, 2018, an abnormal increase in the number of pulses greater than m+2σ was observed, unrelated to the anti-mine. Although similar pulse waveforms did not exceed the m+2σ threshold, they were also observed prior to four other log(Es) > 8 earthquakes during the observation period, and these pulses were associated with preseismic electromagnetic waves. Possible pulse due to radiation. On the other hand, it is also possible that the pulse waveform is caused by cloud discharge, and in order to discriminate between electromagnetic radiation caused by cloud discharge and earthquake precursor electromagnetic radiation, electromagnetic radiation position determination using an interferometer and comparison with satellite images and meteorological data are required. also found to be essential.

How to cite: Hattori, K., Ohta, Y., Yoshino, C., and Imazumi, N.: Development of Broadband Interferometer System for Pre-Earthquake Electromagnetic Radiation in LF Band :Design and Performance of Antenna Elements, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-17076, https://doi.org/10.5194/egusphere-egu23-17076, 2023.

Posters virtual: Fri, 28 Apr, 14:00–15:45 | vHall NH

Chairpersons: Pier Francesco Biagi, Carolina Filizzola, Iren Moldovan
vNH.15
|
EGU23-852
|
ECS
|
solicited
Cristiano Fidani

Statistical analyses of NOAA POES data have recently evidenced electron burst losses 1.5-3.5 h before strong earthquakes in the West Pacific and 55-59 h before strong earthquakes in East Pacific. The conditional probability of a strong seismic event after an ionospheric loss event was calculated depicting possible scenarios in both areas. It presented a geohazard risk reduction initiative that can gain valuable preparation time by adopting a probabilistic short-term warning a few hours prior, especially for tsunamis in those dangerous areas. As electron losses were detected in the same region both for West and East Pacific earthquakes, the probability of a strong event in the West Pacific would be first considered and vanish in less than 4 h. Then, after considering the seismic activity, a statistical evaluation of a disastrous event for the East Pacific coast is generated, so defining a time-dependent increase in conditional probability.

How to cite: Fidani, C.: A suitable time-dependent conditional probability for Pacific strong earthquakes, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-852, https://doi.org/10.5194/egusphere-egu23-852, 2023.

vNH.16
|
EGU23-1592
|
Highlight
|
Michael E. Contadakis, Demeter N. Arabelos, Pikridas Christos, Stylianos Bitharis, and Emmanuel Scordilis

This is one of a series of papers in which  we investigate the Lower ionospheric variation on the occasion of intense tectonic activity.In the present paper, we investigate the TEC variations during the intense seismic activity in Thessaly, on March 2021 over Europe. The Total Electron Content (TEC) data are been provided by the  Hermes GNSS Network managed by GNSS_QC, AUTH Greece, the HxGN/SmartNet-Greece of Metrica S.A, and the EUREF Network. These data were analysed using Discrete Fourier Analysis in order to investigate the TEC turbulence. The results of this investigation indicate that the High-Frequency limit fo of the ionospheric turbulence content, increases as aproaching the occurrence time of the earthquake, pointing to the earthquake epicenter, in accordane to our previous investigations. We conclude that the Lithosphere Atmosphere Ionosphere Coupling, LAIC, mechanism through acoustic or gravity waves could explain this phenomenology.

 

Keywords: Seismicity, Lower Ionosphere, Ionospheric Turbulence, Brownian Walk, Aegean area.

How to cite: Contadakis, M. E., Arabelos, D. N., Christos, P., Bitharis, S., and Scordilis, E.: Lower  Ionospheric  variation over Europe during the  tectonic activity in the area of Thessaly, Greece on March of 2021., EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-1592, https://doi.org/10.5194/egusphere-egu23-1592, 2023.

vNH.17
|
EGU23-2126
|
Dimitrios Z. Politis, Stelios M. Potirakis, Philopimin Malkotsis, Nikolaos Papadopoulos, Dionysios Dimakos, Michael Exarchos, Efstratios Liadopoulos, Yiannis F. Contoyiannis, Angelos Charitopoulos, Kyriakos Kontakos, Dimitrios Doukakis, Grigorios Koulouras, Nikolaos Melis, and Konstantinos Eftaxias

The ELSEM-Net (hELlenic Seismo-ElectroMagnetics Network, http://elsem-net.uniwa.gr) is a telemetric network of ground-based monitoring stations for the study of fracture-induced electromagnetic emissions. It comprises 11 telemetric stations, spanning all over Greece, and has continuously been operated for almost 30 years. In this paper we present the new, custom designed, instrumentation of the telemetric stations. Specifically, we present both the hardware and the firmware/software used, from antennae to data acquisition and data management. Finally, we present recent recordings prior to significant strong earthquakes (EQs) that have happened in Greece, as well as the obtained analysis results, using nonlinear time series analysis methods, indicating that the acquired signals embed important features associated with the impending EQ.

How to cite: Politis, D. Z., Potirakis, S. M., Malkotsis, P., Papadopoulos, N., Dimakos, D., Exarchos, M., Liadopoulos, E., Contoyiannis, Y. F., Charitopoulos, A., Kontakos, K., Doukakis, D., Koulouras, G., Melis, N., and Eftaxias, K.: New features of the ELSEM-Net electromagnetic monitoring stations network and analysis of recent data associated with strong earthquakes., EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-2126, https://doi.org/10.5194/egusphere-egu23-2126, 2023.

vNH.18
|
EGU23-3854
|
solicited
|
Angelo De Santis, Saioa A. Campuzano, Massimo Calcara, Gianfranco Cianchini, Serena D'Arcangelo, Mariagrazia De Caro, Domenico Di Mauro, Cristiano Fidani, Adriano Nardi, Martina Orlando, Loredana Perrone, Alessandro Piscini, Dario Sabbagh, and Maurizio Soldani

Three earthquakes of comparable magnitude and in different tectonic contexts occurred on 15 June 2019 (M7.2) in New Zealand (Kermadec Islands), on 6 July 2019 (M7.1) in California (Ridgecrest) and on 21 May 2021 (M7.3) in China (Maduo) (dates in UT). We applied a multiparameter - multilayer approach to lithospheric, atmospheric and ionospheric data, the latter taken from CSES  and Swarm satellites, before the mentioned large earthquakes to detect potential pre-earthquake anomalies. In all case studies, we note the following: a) similar precursor times of occurrences, confirming the Rikitake law for which the larger the earthquake magnitude the longer the anticipation time of the precursor and b) a clear acceleration of the possible precursory anomalies before each mainshock, as typical of critical systems approaching a critical state. We propose an interpretative model to take into account the chain of detected phenomena.

How to cite: De Santis, A., Campuzano, S. A., Calcara, M., Cianchini, G., D'Arcangelo, S., De Caro, M., Di Mauro, D., Fidani, C., Nardi, A., Orlando, M., Perrone, L., Piscini, A., Sabbagh, D., and Soldani, M.: Comparison of the precursory effects in lithosphere, atmosphere and ionosphere of three large earthquakes with comparable magnitude: the cases of 2019 Kermadec Islands (NZ) and Ridgecrest (USA) earthquakes and 2021 Maduo (China) earthquake, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-3854, https://doi.org/10.5194/egusphere-egu23-3854, 2023.

vNH.19
|
EGU23-5813
Rachel Grant, Alexander Shitov, and Andrey V. Karanin

There has been little research on how the composition of underlying rock formation affects animal species’ distribution and abundance. The subject is worthy of consideration as, for example,  it has been shown that ultrabasic and serpentine rocks in particular can give rise to plant biodiversity hotspots with a high level of endemism. Corresponding studies of fauna are lacking. We aim to test the hypothesis that rock type affects mammal abundance and biodiversity.

Here we present a comparative analysis of the abundance of mammals and its relationship with geological composition in the area of Gorny Altai, a mountainous region in Russia.

We used GIS approaches to map the influence of rock types on mammal abundance, while holding other factors such as soil type, relief, etc. constant. The study reveals significant correlations between underlying geology and variation in mammal distribution even when other factors such as soil type, climate and vegetation are held constant.

Intrusive rocks were found to have the greatest impact on variation in mammal distribution whereas sedimentary and metamorphic rocks have almost no effect. A characteristic feature of magmatic formations is their clear geochemical specialization, i.e. certain geochemical anomalies (Fe, Cu, Au, Hg, Ag, etc.) are confined to intrusions. We suggest that geophysical fields (magnetic and electric fields) and geochemical anomalies associated with intrusive rocks may have an impact on the distribution and species composition of mammals, as well as geodynamic processes such as fault activity. This finding has implications for further research into the phenomenon of animals’ anticipatory responses to earthquakes. 

How to cite: Grant, R., Shitov, A., and Karanin, A. V.: Mammal abundance varies with geochemical specialisation in the underlying rock formations., EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-5813, https://doi.org/10.5194/egusphere-egu23-5813, 2023.

vNH.20
|
EGU23-10299
|
ECS
Hong-Jia Chen and Chien-Chih Chen

Earthquakes are reported to relate to rupture phenomena in complex self-organizing systems. Hence, the earthquake rupture is regarded as a critical point. The preparation process of an earthquake could be considered as the crustal system approaching this critical point. Complex dynamical systems can have critical tipping points at which a sudden shift to a contrasting dynamical regime may occur; in the meantime, the time series of the systems can behave much differently. Although it is extremely challenging to predict such critical points before they are reached, work in different scientific fields is now suggesting the existence of generic early-warning signals that may indicate a wide class of systems if a critical threshold is approaching. Those precursory signals include increasing correlations and variance, varying skewness, and so on. The critical transition of a system includes spatial criticality and temporal criticality. In this study, we attempt to research the spatial and temporal criticality of the crustal system by using the self-potential (SP) signals of the Taiwan Geoelectric Monitoring System (GEMS). The GEMS network consists of 20 SP stations with an interstation distance of 50 km. We calculate the correlations of the daily signals between any two stations, which formed an adjacency matrix. Then, we estimate the connectivity density based on the adjacency matrix and compare the daily connectivity density time series with ML ≥ 5 earthquakes. We would expect to find out high connectivity densities before a strong earthquake. This would mean that earthquake-related telluric currents flow out through the GEMS stations during the earthquake preparation process; hence, the SP signals of most stations would almost be connected. As a result, we might establish an earthquake forecasting technique using the SP data based on the concept of the critical-point theory.

How to cite: Chen, H.-J. and Chen, C.-C.: Connectivity of geoelectric network before strong earthquakes, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-10299, https://doi.org/10.5194/egusphere-egu23-10299, 2023.

vNH.21
|
EGU23-14058
Lisa Pierotti, Cristiano Fidani, Gianluca Facca, and Fabrizio Gherardi

A correlation between low seismic activity and CO2 measurements variations was observed at the Gallicano thermomineral spring, Tuscany, Italy, where an automatic monitoring multiparametric geochemical station is operative since 2003 (Pierotti et al., 2015). The above-mentioned correlation reported a time delay of about 2 days of small earthquakes with respect to CO2 anomalies. Starting from this correlation a conditional probability of earthquake occurrence given the CO2 anomaly detection was calculated, with a probability gain near 4 (Pierotti et al., 2022).  A statistical correlation was also calculated between rain events and CO2 anomalies which was observed for rain vents ahead CO2 anomalies of one days. This permitted to distinguish CO2 anomalies due to meteorological versus tectonic activities.  Following this distinction, and subtracting the rain contribution to the CO2 variations, a new correlation was observed between small earthquakes and CO2 anomalies which confirmed the past results whit a better performance. The new correlation peak is better defined and concentrated in the time lag of 2 days. The p-values of both earthquake and rain to CO2 correlations were calculated. The correspondent probability gain in an earthquake forecasting experiment, taking into account the rain events, increased from less than 4 to 4.5. 

     

 

Fidani, C. (2021). West Pacific Earthquake Forecasting Using NOAA Electron Bursts With Independent L-Shells and Ground-Based Magnetic Correlations. Front. Earth Sci. 9:673105.

Pierotti, L., Botti, F., D’Intinosante, V., Facca, G., Gherardi, F. (2015). Anomalous CO2 content in the Gallicano thermo-mineral spring (Serchio Valley, Italy) before the 21 June 2013, Alpi Apuane earthquake (M= 5.2). Physics and Chemistry of the Earth, Parts A/B/C, 85, 131-140.

Pierotti, L., Fidani C., Facca, G., Gherardi, F. (2022). Local earthquake conditional probability based on long term CO2 measurements. In 40st GNGTS National Conference, Trieste, 27 - 29 June 2022.

How to cite: Pierotti, L., Fidani, C., Facca, G., and Gherardi, F.: Improving the statistical correlations between low seismic events and CO2 variations subtracting the rain contribution, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-14058, https://doi.org/10.5194/egusphere-egu23-14058, 2023.

vNH.22
|
EGU23-17053
|
Iren Adelina Moldovan, Victorin Toader, Andrei Mihai, Felix Borleanu, Laura Petrescu, Anica Otilia Placinta, and Liviu Manea

Our study aims to detect anomalous seismic and geomagnetic precursor signals appearing before Vrancea, Romania medium sized earthquakes, that occurred in the last decade (2012-2022), using in the first step the visualization processing method, to identify the time lap between the two anomalies and the following earthquakes. During the study period, in Vrancea seismogenic zone there have been recorded 39 earthquakes with magnitude ML>=4.5, both at normal and intermediate depth. We have assumed that the zone of effective manifestation of the precursor deformations is a circle with the radius taken from the equation of Dobrovolsky, 1979, so the studies were done inside this zone. The Seismic data consists in seismic velocities vp and vs (vp/vs), computed from the arrivals of seismic waves at the NIEP stations situated in the earthquake preparation area. The calculations are done automatically by the Phenomenal platform https://ph.infp.ro/seismicity/data, using the corrected Romanian seismic bulletins. The seismic velocity is the geophysical property that has a key role in characterizing dynamic processes and the state of the stress around the faults, providing significant information regarding the change in tectonic regime. In the crust, velocities change before, during and after earthquakes through several mechanisms related to, for example, fault deformations, pore pressure, changes in stress state (pressure perturbation) and rebound processes.

The Geomagnetic data are obtained from Muntele Rosu (MLR) Seismological Observatory of NIEP, situated inside Vrancea seismogenic zone as primary station, and from Surlari (SUA) Geomagnetic Observatory of Intermagnet, as remote station, unaffected by medium size earthquake preparedness processes. Geomagnetic indices taken from GFZ (https://www.gfz-potsdam.de/kp-index) were used to separate the global magnetic variation from possible local seismo-electromagnetic anomalies, that might appear in a seismic area like Vrancea zone and to ensure that observed geomagnetic fluctuations are not caused by solar-terrestrial effect.

In this presentation we study the appearance of the changes of seismic propagation velocities (vp/vs) in time and the geomagnetic deviations from the normal trend before the occurrence of moderate size crustal and intermediate earthquakes from Vrancea zone, to emphasize the time span between the studied phenomena, in order to be able to find a statistical correlation between them.

Acknowledgements. This work was funded by: PN23 36 02 01/2023 SOL4RISC Nucleu Project, by MCD, Phenomenal Project PN-III-P2-2.1-PED-2019-1693, 480PED/2020 and AFROS Project PN-III-P4-ID-PCE-2020-1361, PCE/2021 supported by UEFISCDI

How to cite: Moldovan, I. A., Toader, V., Mihai, A., Borleanu, F., Petrescu, L., Placinta, A. O., and Manea, L.: Detection of correlated anomalous seismic and geomagnetic precursor signals before Vrancea moderate size earthquakes, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-17053, https://doi.org/10.5194/egusphere-egu23-17053, 2023.