EGU23-17609
https://doi.org/10.5194/egusphere-egu23-17609
EGU General Assembly 2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.

Rupture processes of the 2023 Türkiye earthquake sequence: Main- and aftershocks

Gesa Petersen, Pinar Büyükakpinar, Felipe Vera, Malte Metz, Joachim Saul, Simone Cesca, Torsten Dahm, and Frederik Tilmann
Gesa Petersen et al.
  • GeoForschungsZentrum (GFZ) Potsdam, Germany (gesap@gfz-potsdam.de)

On February 6, 2023, southeastern Turkey was hit by two of the most devastating earthquakes in the instrumental period of the country, with Mw 7.7-7.8 and Mw 7.6, respectively. Both earthquakes caused massive damage and in total tens of thousands of casualties in Turkey and Syria. In this study, we analyze the rupture processes of main- and aftershocks by combining different seismic source characterization techniques using teleseismic, regional and local data. We perform finite source inversion and back projection-based analyses for the two main shocks and invert for probabilistic centroid moment tensor solutions of both main and aftershocks (M≥4). The first earthquake was bilateral and ruptured a seismic gap along the East Anatolian Fault Zone, with rupture first propagating to the north-east for ~200 km, and in a latter phase propagating to the SSW, probably coming to a halt only on a branch extending into the Mediterranean Sea. The total length of the rupture likely exceeds 500 km. The second event ruptured the EW oriented Sürgü-Misis Fault Zone to the NW of the first event. It shows a highly concentrated rupture near the epicenter, Rupture directivity analyses for M≥5.3 earthquakes provide additional insights into dynamic source aspects. Preliminary moment tensor solutions of numerous aftershocks indicate a remarkable variability of rupturing mechanisms, suggesting stress changes and the activation of multiple faults in the vicinity of the main ruptures. With our work, we aim to shed light onto multiple aspects of the complex rupture evolution and hope to provide new insights towards a better understanding of the devastating 2023 Türkiye earthquake sequence.

How to cite: Petersen, G., Büyükakpinar, P., Vera, F., Metz, M., Saul, J., Cesca, S., Dahm, T., and Tilmann, F.: Rupture processes of the 2023 Türkiye earthquake sequence: Main- and aftershocks, EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-17609, https://doi.org/10.5194/egusphere-egu23-17609, 2023.