EGU23-17628, updated on 11 Jan 2024
https://doi.org/10.5194/egusphere-egu23-17628
EGU General Assembly 2023
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Surface deformation retrieval of the February 2023 South-East Turkeyand Northern Syria Mw 7.8 and Mw 7.5 seismic events through Sentinel-1and SAOCOM-1 co-seismic SAR image analysis

Francesco Casu1, Fernando Monterroso1, Yenni Lorena Belen Roa1, Pasquale Striano1, Simone Atzori2, Manuela Bonano1, Claudio De Luca1, Marianna Franzese1, Michele Manunta1, Giovanni Onorato1, Muhammad Yasir1,3, Ivana Zinno1, and Riccardo Lanari1
Francesco Casu et al.
  • 1Institute for Electromagnetic Sensing of the Environment (IREA) - National Research Council (CNR), Italy
  • 2National Institute of Geophysics and Volcanology (INGV), Italy
  • 3Department of Engineering (DI), Università degli Studi di Napoli “Parthenope”, Italy

On 6 February 2023 two Mw 7.8 and Mw 7.5 seismic events struck the South-East Turkey and Northern Syria regions, close to the cities of Gaziantep and Ekinözü, causing more than 50 thousands of fatalities and above 120 thousands of injured, with incalculable, widespread damage to the surrounding villages. Such earthquakes are related to the main geodynamic regime controlled by the triple junction between the Anatolian, Arabian and African Plates, and by the tectonic context associated with a shallow strike-slip faulting, including the East Anatolian Fault zone and the Dead Sea Transform. Immediately after the occurrence of these earthquakes, we started investigating the surface deformation field induced by the considered seismic events by applying the Differential SAR Interferometry (DInSAR) and the Pixel Offset (PO) techniques, within the framework of EPOS (European Plate Observing System), which is the European research infrastructure for the study of the solid Earth.

To this aim, we exploited several co-seismic SAR data pairs that have been collected by different satellite constellations. First of all, we exploited C-band (5.6 cm of wavelength) SAR data acquired by the Sentinel-1A sensor of the European Copernicus program from both ascending (Track 14) and descending (Track 94 and 21) orbits. Moreover, we benefited from the availability of a number of L-band (23 cm of wavelength) SAR images acquired by the twin satellites of the Argentine SAOCOM-1 constellation, programmed in collaboration with the Italian and Argentine Space Agencies.

The main focus of this work regards the joint exploitation of the Sentinel-1 and SAOCOM-1 SAR products to retrieve the 3D co-seismic deformation field. Further analysis is envisaged in order to model the co-seismic sources.

This work is supported by: the 2022-2024 IREA-CNR and Italian Civil Protection Department agreement, and by the H2020 EPOS-SP (GA 871121) and Geo-INQUIRE (GA 101058518) projects. The authors also acknowledge ASI for providing the SAOCOM data under the ASI-CONAE SAOCOM License to Use Agreement. Sentinel-1 data were provided through the European Copernicus program.

How to cite: Casu, F., Monterroso, F., Roa, Y. L. B., Striano, P., Atzori, S., Bonano, M., De Luca, C., Franzese, M., Manunta, M., Onorato, G., Yasir, M., Zinno, I., and Lanari, R.: Surface deformation retrieval of the February 2023 South-East Turkeyand Northern Syria Mw 7.8 and Mw 7.5 seismic events through Sentinel-1and SAOCOM-1 co-seismic SAR image analysis, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-17628, https://doi.org/10.5194/egusphere-egu23-17628, 2023.