EGU23-1803
https://doi.org/10.5194/egusphere-egu23-1803
EGU General Assembly 2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.

Coseismic off-fault antithetic shear deformation in southwestern Taiwan triggered by the 2016 Mw 6.4 Meinong earthquake

Ruey-Juin Rau1, Li-Chia Lai1, and Kuo-En Ching2
Ruey-Juin Rau et al.
  • 1Department of Earth Sciences, National Cheng Kung University, Tainan, Taiwan (raurj@mail.ncku.edu.tw)
  • 2Department of Geomatics, National Cheng Kung University, Tainan, Taiwan

We used 70 campaign-mode, 12 continuous and 6 high-rate GNSS and InSAR data to examine the coseismic off-fault antithetic shear triggered by the 2016 Mw 6.4 Meinong oblique thrust earthquake at the Hsinhua fault area, ~30 km northwest of the epicenter. The GNSS and InSAR data were inverted to estimate the 3D coseismic displacement field at the Tainan frontal fold-thrust belt, where the deformation is mostly affected by the directivity along the rupture front direction of the Meinong earthquake. The coseismic deformation pattern shows dominantly synthetic shear along the rupture direction, on the contrary, a nearly N-S striking, 7-km-long and 5-km-wide area indicating antithetic motion appeared at northeast of the Tainan tableland and cross-cutting the ENE-WSW-striking Hsinhua fault at a high angle. The N-S striking structure at the Hsinhua fault area reveals coseismic horizontal displacements of 3.0-7.0 cm to the southeast and vertical displacements of 0.4 to 4.4 cm, and although in the opposite direction, the magnitude of horizontal displacements of the antithetic shear are comparable to those of the synthetic motion in the adjacent areas. We calculated the static Coulomb stress change on the possible west-dipping shallow structure at the Hsinhua area due to slip on the source fault of the 2016 Meinong earthquake. The calculated static stress change is about 0.05 bar, which is negligible and very unlikely to promote the structure or bedding to slip at 30-km away for such a moderate earthquake. We also processed 6 high-rate, two 50-Hz and four 1-Hz, GNSS data for the PPP displacement and SNIVEL GPS-derived velocities, in that two stations, one 50-Hz and one 1-Hz, are located inside the block with antithetic motion. The high-rate GNSS solutions indicate that the displacements occurred at the same time when the P and S waves arrived, and velocity pulses up to 90.0 cm/s appeared at all six stations. We suggest that, as evidenced by large velocity pulses resulted from the strong directivity effect, the dynamic stress change caused by the rupture of the 2016 Meinong earthquake triggered the structure 30-km away.

How to cite: Rau, R.-J., Lai, L.-C., and Ching, K.-E.: Coseismic off-fault antithetic shear deformation in southwestern Taiwan triggered by the 2016 Mw 6.4 Meinong earthquake, EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-1803, https://doi.org/10.5194/egusphere-egu23-1803, 2023.

Supplementary materials

Supplementary material file